ﻻ يوجد ملخص باللغة العربية
Superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with the electric field effect. The data provide evidence for a two dimensional quantum superconductor to insulator (2D-QSI) transition. Here we explore the compatibility of this phase transition line with Berezinskii-Kosterlitz-Thouless (BKT) behavior and a 2D-QSI transition. In an intermediate regime, limited by a finite size effect, we uncover remarkable consistency with BKT- criticality, weak localization in the insulating state and non-Drude behavior in the normal state. Our estimates for the critical exponents of the 2D-QSI-transition, z =1 and nu=3, suggest that it belongs to the 3D-xy universality class.
Recently superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with the electric field effect to an unprecedented range of transition temperatures. Here we perform a detailed finite size scaling analysis to explor
Hybrid normal metal - insulator - superconductor microstructures suitable for studying an interference of electrons were fabricated. The structures consist of a superconducting loop connected to a normal metal electrode through a tunnel barrier . An
The superconductor-insulator transition of ultrathin films of bismuth, grown on liquid helium cooled substrates, has been studied. The transition was tuned by changing both film thickness and perpendicular magnetic field. Assuming that the transition
The superconductor-insulator transition (SIT) is an excellent example for a quantum phase transition at zero temperature, dominated by quantum fluctuations. These are expected to be very prominent close to the quantum critical point. So far most of t
We isolated flux disorder effects on the transport at the critical point of the quantum magnetic field tuned Superconductor to Insulator transition (BSIT). The experiments employed films patterned into geometrically disordered hexagonal arrays. Spati