ﻻ يوجد ملخص باللغة العربية
We present an analysis of the additive average Schwarz preconditioner with two newly proposed adaptively enriched coarse spaces which was presented at the 23rd International conference on domain decomposition methods in Korea, for solving second order elliptic problems with highly varying and discontinuous coefficients. It is shown that the condition number of the preconditioned system is bounded independently of the variations and the jumps in the coefficient, and depends linearly on the mesh parameter ratio H/h, that is the ratio between the subdomain size and the mesh size, thereby retaining the same optimality and scalablity of the original additive average Schwarz preconditioner.
The goal of this work is to construct and study hybrid and multiplicative two-level overlapping Schwarz algorithms with standard coarse spaces for the almost incompressible linear elasticity and Stokes systems, discretized by mixed finite and spectra
In this paper, we study temporal splitting algorithms for multiscale problems. The exact fine-grid spatial problems typically require some reduction in degrees of freedom. Multiscale algorithms are designed to represent the fine-scale details on a co
A symmetric and a nonsymmetric variant of the additive Schwarz preconditioner are proposed for the solution of a nonsymmetric system of algebraic equations arising from a general finite volume element discretization of symmetric elliptic problems wit
Based on an observation that additive Schwarz methods for general convex optimization can be interpreted as gradient methods, we propose an acceleration scheme for additive Schwarz methods. Adopting acceleration techniques developed for gradient meth
In this paper we design and analyze a uniform preconditioner for a class of high order Discontinuous Galerkin schemes. The preconditioner is based on a space splitting involving the high order conforming subspace and results from the interpretation o