ترغب بنشر مسار تعليمي؟ اضغط هنا

A uniform additive Schwarz preconditioner for the $hp$-version of Discontinuous Galerkin approximations of elliptic problems

226   0   0.0 ( 0 )
 نشر من قبل Marco Sarti
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we design and analyze a uniform preconditioner for a class of high order Discontinuous Galerkin schemes. The preconditioner is based on a space splitting involving the high order conforming subspace and results from the interpretation of the problem as a nearly-singular problem. We show that the proposed preconditioner exhibits spectral bounds that are uniform with respect to the discretization parameters, i.e., the mesh size, the polynomial degree and the penalization coefficient. The theoretical estimates obtained are supported by several numerical simulations.



قيم البحث

اقرأ أيضاً

A symmetric and a nonsymmetric variant of the additive Schwarz preconditioner are proposed for the solution of a nonsymmetric system of algebraic equations arising from a general finite volume element discretization of symmetric elliptic problems wit h large jumps in the entries of the coefficient matrices across subdomains. It is shown in the analysis, that the convergence of the preconditioned GMRES iteration with the proposed preconditioners, depends polylogarithmically on the mesh parameters, in other words, the convergence is only weakly dependent on the mesh parameters, and it is robust with respect to the jumps in the coefficients.
In this article we design and analyze a class of two-level non-overlapping additive Schwarz preconditioners for the solution of the linear system of equations stemming from discontinuous Galerkin discretizations of second-order elliptic partial diffe rential equations on polytopic meshes. The preconditioner is based on a coarse space and a non-overlapping partition of the computational domain where local solvers are applied in parallel. In particular, the coarse space can potentially be chosen to be non-embedded with respect to the finer space; indeed it can be obtained from the fine grid by employing agglomeration and edge coarsening techniques. We investigate the dependence of the condition number of the preconditioned system with respect to the diffusion coefficient and the discretization parameters, i.e., the mesh size and the polynomial degree of the fine and coarse spaces. Numerical examples are presented which confirm the theoretical bounds.
126 - Yvon Maday , Carlo Marcati 2018
We study the regularity in weighted Sobolev spaces of Schr{o}dinger-type eigenvalue problems, and we analyse their approximation via a discontinuous Galerkin (dG) $hp$ finite element method. In particular, we show that, for a class of singular potent ials, the eigenfunctions of the operator belong to analytic-type non homogeneous weighted Sobolev spaces. Using this result, we prove that the an isotropically graded $hp$ dG method is spectrally accurate, and that the numerical approximation converges with exponential rate to the exact solution. Numerical tests in two and three dimensions confirm the theoretical results and provide an insight into the the behaviour of the method for varying discretisation parameters.
In this manuscript we present an approach to analyze the discontinuous Galerkin solution for general quasilinear elliptic problems. This approach is sufficiently general to extend most of the well-known discretization schemes, including BR1, BR2, SIP G and LDG, to nonlinear cases in a canonical way, and to establish the stability of their solution. Furthermore, in case of monotone and globally Lipschitz problems, we prove the existence and uniqueness of the approximated solution and the $h$-optimality of the error estimate in the energy norm as well as in the $L_2$ norm.
147 - Limin Ma 2020
In this paper, we present a unified analysis of the superconvergence property for a large class of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and linear elasticity problems with symmetric stress formulati ons. Based on this result, some locally postprocess schemes are employed to improve the accuracy of displacement by order min(k+1, 2) if polynomials of degree k are employed for displacement. Some numerical experiments are carried out to validate the theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا