ﻻ يوجد ملخص باللغة العربية
We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local magnetic moments coupled to propagating electrons breaks down in helical Luttinger Liquids when the electron interaction is stronger than some critical value. In this novel regime, the Kondo effect overwhelms the RKKY interaction over all macroscopic inter-impurity distances. This phenomenon is a direct consequence of the helicity (realized, for instance, at edges of a time-reversal invariant topological insulator) and does not take place in usual (non-helical) Luttinger Liquids.
Ballistic transport of helical edge modes in two-dimensional topological insulators is protected by time-reversal symmetry. Recently it was pointed out [1] that coupling of non-interacting helical electrons to an array of randomly anisotropic Kondo i
We study one-dimensional Kondo Lattices (KL) which consist of itinerant electrons interacting with Kondo impurities (KI) - localized quantum magnetic moments. We focus on KL with isotropic exchange interaction between electrons and KI and with a high
In a Kondo lattice, the spin exchange coupling between a local spin and the conduction electrons acquires nonlocal contributions due to conduction electron scattering from surrounding local spins and the subsequent RKKY interaction. It leads to a hit
We apply our recently developed, selfconsistent renormalization group (RG) method to STM spectra of a two-impurity Kondo system consisting of two cobalt atoms connected by a one-dimensional Cu chain on a Cu surface. This RG method was developed to de
We investigate the impact of an Ohmic-class environment on the conduction and correlation properties of one-dimensional interacting systems. Interestingly, we reveal that inter-particle interactions can be engineered by the environments noise statist