ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport in helical Luttinger Liquid with Kondo impurities

187   0   0.0 ( 0 )
 نشر من قبل Oleg Yevtushenko
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ballistic transport of helical edge modes in two-dimensional topological insulators is protected by time-reversal symmetry. Recently it was pointed out [1] that coupling of non-interacting helical electrons to an array of randomly anisotropic Kondo impurities can lead to a spontaneous breaking of the symmetry and, thus, can remove this protection. We have analyzed effects of the interaction between the electrons using a combination of the functional and the Abelian bosonization approaches. The suppression of the ballistic transport turns out to be robust in a broad range of the interaction strength. We have evaluated the renormalization of the localization length and have found that, for strong interaction, it is substantial. We have identified various regimes of the dc transport and discussed its temperature and sample size dependencies in each of the regimes.



قيم البحث

اقرأ أيضاً

We consider theoretically the transport in a one-channel spinless Luttinger liquid with two strong impurities in the presence of dissipation. As a difference with respect to the dissipation free case, where the two impurities fully transmit electrons at resonance points, the dissipation prevents complete transmission in the present situation. A rich crossover diagram for the conductance as a function of applied voltage, temperature, dissipation strength, Luttinger liquid parameter K and the deviation from the resonance condition is obtained. For weak dissipation and 1/2<K<1, the conduction shows a non-monotonic increase as a function of temperature or voltage. For strong dissipation the conduction increases monotonically but is exponentially small.
We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local magnetic moments coupled to propagating electrons breaks down in helical Luttinger Liquids when the electron interaction is stronger than some critical value. In this novel regime, the Kondo effect overwhelms the RKKY interaction over all macroscopic inter-impurity distances. This phenomenon is a direct consequence of the helicity (realized, for instance, at edges of a time-reversal invariant topological insulator) and does not take place in usual (non-helical) Luttinger Liquids.
Domain walls in fractional quantum Hall ferromagnets are gapless helical one-dimensional channels formed at the boundaries of topologically distinct quantum Hall (QH) liquids. Na{i}vely, these helical domain walls (hDWs) constitute two counter-propag ating chiral states with opposite spins. Coupled to an s-wave superconductor, helical channels are expected to lead to topological superconductivity with high order non-Abelian excitations. Here we investigate transport properties of hDWs in the $ u=2/3$ fractional QH regime. Experimentally we found that current carried by hDWs is substantially smaller than the prediction of the na{i}ve model. Luttinger liquid theory of the system reveals redistribution of currents between quasiparticle charge, spin and neutral modes, and predicts the reduction of the hDW current. Inclusion of spin-non-conserving tunneling processes reconciles theory with experiment. The theory confirms emergence of spin modes required for the formation of fractional topological superconductivity.
We consider chiral electrons moving along the 1D helical edge of a 2D topological insulator and interacting with a disordered chain of Kondo impurities. Assuming the electron-spin couplings of random anisotropies, we map this system to the problem of the pinning of the charge density wave by the disordered potential. This mapping proves that arbitrary weak anisotropic disorder in coupling of chiral electrons with spin impurities leads to the Anderson localization of the edge states.
Dynamical magnetic impurities (MI) are considered as a possible origin for suppression of the ballistic helical transport on edges of 2D topological insulators. The MIs provide a spin-flip backscattering of itinerant helical electrons. Such a backsca ttering reduces the ballistic conductance if the exchange interaction between the MI and the electrons is anisotropic and the Kondo screening is unimportant. It is well-known that the isotropic MIs do not suppress the helical transport in systems with axial spin symmetry of the electrons. We show that, if this symmetry is broken, the isotropic MI acquires an effective anisotropy and suppresses the helical conductance. The peculiar underlying mechanism is a successive backscattering of the electrons which propagate in the same direction and have different energies. The respective correction to the linear conductance is determined by the allowed phase space of the electrons and scales with temperature as T^4. Hence, it disappears at small temperatures. This qualitatively distinguishes effects governed by the MIs with the induced and bare anisotropy; the latter is temperature independent. If T is smaller than the applied bias, finite e V, the allowed phase space is provided by the bias and the differential conductance scales as (e V)^4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا