ﻻ يوجد ملخص باللغة العربية
For expansions in one-dimensional conformal blocks, we provide a rigorous link between the asymptotics of the spectral density of exchanged primaries and the leading singularity in the crossed channel. Our result has a direct application to systems of SL(2,R)-invariant correlators (also known as 1d CFTs). It also puts on solid ground a part of the lightcone bootstrap analysis of the spectrum of operators of high spin and bounded twist in CFTs in d>2. In addition, a similar argument controls the spectral density asymptotics in large N gauge theories.
Current numerical conformal bootstrap techniques carve out islands in theory space by repeatedly checking whether points are allowed or excluded. We propose a new method for searching theory space that replaces the binary information allowed/excluded
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even tho
Infrared fixed points of gauge theories provide intriguing targets for the modern conformal bootstrap program. In this work we provide some preliminary evidence that a family of gauged fermionic CFTs saturate bootstrap bounds and can potentially be s
Conformal field theories play a central role in theoretical physics with many applications ranging from condensed matter to string theory. The conformal bootstrap studies conformal field theories using mathematical consistency conditions and has seen
We consider 5-point functions in conformal field theories in d > 2 dimensions. Using weight-shifting operators, we derive recursion relations which allow for the computation of arbitrary conformal blocks appearing in 5-point functions of scalar opera