ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for gauge theories with the conformal bootstrap

128   0   0.0 ( 0 )
 نشر من قبل Zhijin Li
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Infrared fixed points of gauge theories provide intriguing targets for the modern conformal bootstrap program. In this work we provide some preliminary evidence that a family of gauged fermionic CFTs saturate bootstrap bounds and can potentially be solved with the conformal bootstrap. We start by considering the bootstrap for $SO(N)$ vector 4-point functions in general dimension $D$. In the large $N$ limit, upper bounds on the scaling dimensions of the lowest $SO(N)$ singlet and traceless symmetric scalars interpolate between two solutions at $Delta =D/2-1$ and $Delta =D-1$ via generalized free field theory. In 3D the critical $O(N)$ vector models are known to saturate the bootstrap bounds and correspond to the kinks approaching $Delta =1/2$ at large $N$. We show that the bootstrap bounds also admit another infinite family of kinks ${cal T}_D$, which at large $N$ approach solutions containing free fermion bilinears at $Delta=D-1$ from below. The kinks ${cal T}_D$ appear in general dimensions with a $D$-dependent critical $N^*$ below which the kink disappears. We also study relations between the bounds obtained from the bootstrap with $SO(N)$ vectors, $SU(N)$ fundamentals, and $SU(N)times SU(N)$ bi-fundamentals. We provide a proof for the coincidence between bootstrap bounds with different global symmetries. We show evidence that the proper symmetries of the underlying theories of ${cal T}_D$ are subgroups of $SO(N)$, and we speculate that the kinks ${cal T}_D$ relate to the fixed points of gauge theories coupled to fermions.



قيم البحث

اقرأ أيضاً

The conception of the conformal phase transiton (CPT), which is relevant for the description of non-perturbative dynamics in gauge theories, is introduced and elaborated. The main features of such a phase transition are established. In particular, it is shown that in the CPT there is an abrupt change of the spectrum of light excitations at the critical point, though the phase transition is continuous. The structure of the effective action describing the CPT is elaborated and its connection with the dynamics of the partially conserved dilatation current is pointed out. The applications of these results to QCD, models of dynamical electroweak symmetry breaking, and to the description of the phase diagram in (3+1)-dimensional $ SU(N_c)$ gauge theories are considered.
We construct a generalized linear sigma model as an effective field theory (EFT) to describe nearly conformal gauge theories at low energies. The work is motivated by recent lattice studies of gauge theories near the conformal window, which have show n that the lightest flavor-singlet scalar state in the spectrum ($sigma$) can be much lighter than the vector state ($rho$) and nearly degenerate with the PNGBs ($pi$) over a large range of quark masses. The EFT incorporates this feature. We highlight the crucial role played by the terms in the potential that explicitly break chiral symmetry. The explicit breaking can be large enough so that a limited set of additional terms in the potential can no longer be neglected, with the EFT still weakly coupled in this new range. The additional terms contribute importantly to the scalar and pion masses. In particular, they relax the inequality $M_{sigma}^2 ge 3 M_{pi}^2$, allowing for consistency with current lattice data.
We apply numerical conformal bootstrap techniques to the four-point function of a Weyl spinor in 4d non-supersymmetric CFTs. We find universal bounds on operator dimensions and OPE coefficients, including bounds on operators in mixed symmetry represe ntations of the Lorentz group, which were inaccessible in previous bootstrap studies. We find discontinuities in some of the bounds on operator dimensions, and we show that they arise due to a generic yet previously unobserved fake primary effect, which is related to the existence of poles in conformal blocks. We show that this effect is also responsible for similar discontinuities found in four-fermion bootstrap in 3d, as well as in the mixed-correlator analysis of the 3d Ising CFT. As an important byproduct of our work, we develop a practical technology for numerical approximation of general 4d conformal blocks.
86 - Johan Henriksson 2020
Conformal field theories play a central role in theoretical physics with many applications ranging from condensed matter to string theory. The conformal bootstrap studies conformal field theories using mathematical consistency conditions and has seen great progress over the last decade. In this thesis we present an implementation of analytic bootstrap methods for perturbative conformal field theories in dimensions greater than two, which we achieve by combining large spin perturbation theory with the Lorentzian inversion formula. In the presence of a small expansion parameter, not necessarily the coupling constant, we develop this into a systematic framework, applicable to a wide range of theories. The first two chapters provide the necessary background and a review of the analytic bootstrap. This is followed by a chapter which describes the method in detail, taking the form of a practical guide to large spin perturbation theory by means of a step-by-step implementation. The second part of the thesis presents several explicit implementations of the framework, taking examples from a number of well-studied conformal field theories. We show how many literature results can be reproduced from a purely bootstrap perspective and how a variety of new results can be derived.
One of the hallmarks of 6D superconformal field theories (SCFTs) is that on a partial tensor branch, all known theories resemble quiver gauge theories with links comprised of 6D conformal matter, a generalization of weakly coupled hypermultiplets. In this paper we construct 4D quiverlike gauge theories in which the links are obtained from compactifications of 6D conformal matter on Riemann surfaces with flavor symmetry fluxes. This includes generalizations of super QCD with exceptional gauge groups and quarks replaced by 4D conformal matter. Just as in super QCD, we find evidence for a conformal window as well as confining gauge group factors depending on the total amount of matter. We also present F-theory realizations of these field theories via elliptically fibered Calabi-Yau fourfolds. Gauge groups (and flavor symmetries) come from 7-branes wrapped on surfaces, conformal matter localizes at the intersection of pairs of 7-branes, and Yukawas between 4D conformal matter localize at points coming from triple intersections of 7-branes. Quantum corrections can also modify the classical moduli space of the F-theory model, matching expectations from effective field theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا