ﻻ يوجد ملخص باللغة العربية
Human engagement in narrative is partially driven by reasoning about discourse relations between narrative events, and the expectations about what is likely to happen next that results from such reasoning. Researchers in NLP have tackled modeling such expectations from a range of perspectives, including treating it as the inference of the contingent discourse relation, or as a type of common-sense causal reasoning. Our approach is to model likelihood between events by drawing on several of these lines of previous work. We implement and evaluate different unsupervised methods for learning event pairs that are likely to be contingent on one another. We refine event pairs that we learn from a corpus of film scene descriptions utilizing web search counts, and evaluate our results by collecting human judgments of contingency. Our results indicate that the use of web search counts increases the average accuracy of our best method to 85.64% over a baseline of 50%, as compared to an average accuracy of 75.15% without web search.
Unsupervised machine translation---i.e., not assuming any cross-lingual supervision signal, whether a dictionary, translations, or comparable corpora---seems impossible, but nevertheless, Lample et al. (2018) recently proposed a fully unsupervised ma
Traditional event extraction methods require predefined event types and their corresponding annotations to learn event extractors. These prerequisites are often hard to be satisfied in real-world applications. This work presents a corpus-based open-d
We explore clustering of contextualized text representations for two unsupervised syntax induction tasks: part of speech induction (POSI) and constituency labelling (CoLab). We propose a deep embedded clustering approach which jointly transforms thes
Great progress has been made in unsupervised bilingual lexicon induction (UBLI) by aligning the source and target word embeddings independently trained on monolingual corpora. The common assumption of most UBLI models is that the embedding spaces of
Bilingual lexicons map words in one language to their translations in another, and are typically induced by learning linear projections to align monolingual word embedding spaces. In this paper, we show it is possible to produce much higher quality l