ﻻ يوجد ملخص باللغة العربية
In the classical secretary problem, one attempts to find the maximum of an unknown and unlearnable distribution through sequential search. In many real-world searches, however, distributions are not entirely unknown and can be learned through experience. To investigate learning in such a repeated secretary problem we conduct a large-scale behavioral experiment in which people search repeatedly from fixed distributions. In contrast to prior investigations that find no evidence for learning in the classical scenario, in the repeated setting we observe substantial learning resulting in near-optimal stopping behavior. We conduct a Bayesian comparison of multiple behavioral models which shows that participants behavior is best described by a class of threshold-based models that contains the theoretically optimal strategy. Fitting such a threshold-based model to data reveals players estimated thresholds to be surprisingly close to the optimal thresholds after only a small number of games.
In the secretary problem we are faced with an online sequence of elements with values. Upon seeing an element we have to make an irrevocable take-it-or-leave-it decision. The goal is to maximize the probability of picking the element of maximum value
We consider the online problem in which an intermediary trades identical items with a sequence of n buyers and n sellers, each of unit demand. We assume that the values of the traders are selected by an adversary and the sequence is randomly permuted
We study secretary problems in settings with multiple agents. In the standard secretary problem, a sequence of arbitrary awards arrive online, in a random order, and a single decision maker makes an immediate and irrevocable decision whether to accep
In this paper we consider the so-called Multi-returning secretary problem, a version of the Secretary problem in which each candidate has $m$ identical copies. The case $m=2$ has already been completely solved by several authors using different metho
In the ordinal Matroid Secretary Problem (MSP), elements from a weighted matroid are presented in random order to an algorithm that must incrementally select a large weight independent set. However, the algorithm can only compare pairs of revealed el