ﻻ يوجد ملخص باللغة العربية
Let $R$ be any ring with identity and Ch($R$) the category of chain complexes of (left) $R$-modules. We show that the Gorenstein AC-projective chain complexes are the cofibrant objects of an abelian model structure on Ch($R$). The model structure is cofibrantly generated and is projective in the sense that the trivially cofibrant objects are the categorically projective chain complexes. We show that when $R$ is a Ding-Chen ring, that is, a two-sided coherent ring with finite self FP-injective dimension, then the model structure is finitely generated, and so its homotopy category is compactly generated. Constructing this model structure also shows that every chain complex over any ring has a Gorenstein AC-projective precover. These are precisely Gorenstein projective (in the usual sense) precovers whenever $R$ is either a Ding-Chen ring, or, a ring for which all level (left) $R$-modules have finite projective dimension. For a general (right) coherent ring $R$, the Gorenstein AC-projective complexes coincide with the Ding projective complexes and so provide such precovers in this case.
We introduce what is meant by an AC-Gorenstein ring. It is a generalized notion of Gorenstein ring which is compatible with the Gorenstein AC-injective and Gorenstein AC-projective modules of Bravo-Gillespie-Hovey. It is also compatible with the noti
Let $T=left( begin{array}{cc} R & M 0 & S end{array} right) $ be a triangular matrix ring with $R$ and $S$ rings and $_RM_S$ an $R$-$S$-bimodule. We describe Gorenstein projective modules over $T$. In particular, we refine a result of Enoch
We investigate the relationship between the level of a bounded complex over a commutative ring with respect to the class of Gorenstein projective modules and other invariants of the complex or ring, such as projective dimension, Gorenstein projective
A result of Foxby states that if there exists a complex with finite depth, finite flat dimension, and finite injective dimension over a local ring $R$, then $R$ is Gorenstein. In this paper we investigate some homological dimensions involving a semid
In this paper, we define and study a notion of Ding projective dimension for complexes of left modules over associative rings. In particular, we consider the class of homologically bounded below complexes of left R-modules, and show that Ding projective dimension has a nice functorial description.