ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the wavelet coefficients for function spaces $mathcal{A}_k^p={f: |(i omega)^khat{f}(omega)|_pleq 1}, kin N, pin(1,infty)$ using an important quantity $C_{k,p}(psi)$. In particular, Bernstein type inequalities associated with wavelets are established. We obtained a sharp inequality of Bernstein type for splines, which induces a lower bound for the quantity $C_{k,p}(psi)$ with $psi$ being the semiorthogonal spline wavelets. We also study the asymptotic behavior of wavelet coefficients for both the family of Daubechies orthonormal wavelets and the family of semiorthogonal spline wavelets. Comparison of these two families is done by using the quantity $C_{k,p}(psi)$.
We prove Inequalities similar to those of Bernstein for non-periodic splines in $L_2$ space.
We are proving a Bernstein type inequality in the shift-invariant spaces of $L_2(R)$.
Let ${mathcal P}_k$ denote the set of all algebraic polynomials of degree at most $k$ with real coefficients. Let ${mathcal P}_{n,k}$ be the set of all algebraic polynomials of degree at most $n+k$ having exactly $n+1$ zeros at $0$. Let $$|f|_A := su
Following the recent work of Jiang and Lin (Linear Algebra Appl. 585 (2020) 45--49), we present more results (bounds) on Harnack type inequalities for matrices in terms of majorization (i.e., in partial products) of eigenvalues and singular values. W
For a general measure space $(Omega,mu)$, it is shown that for every band $M$ in $L_p(mu)$ there exists a decomposition $mu=mu+mu^{primeprime}$ such that $M=L_p(mu)={fin L_p(mu);f=0 mu^{primeprime}text{-a.e.}}$. The theory is illustrated by an example, with an application to absorption semigroups.