ترغب بنشر مسار تعليمي؟ اضغط هنا

Harnack type inequalities for matrices in majorization

125   0   0.0 ( 0 )
 نشر من قبل Fuzhen Zhang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Following the recent work of Jiang and Lin (Linear Algebra Appl. 585 (2020) 45--49), we present more results (bounds) on Harnack type inequalities for matrices in terms of majorization (i.e., in partial products) of eigenvalues and singular values. We discuss and compare the bounds derived through different ways. Jiang and Lins results imply Tungs version of Harnacks inequality (Proc. Amer. Math. Soc. 15 (1964) 375--381); our results %with simpler proofs are stronger and more general than Jiang and Lins. We also show some majorization inequalities concerning Cayley transforms. Some open problems on spectral norm and eigenvalues are proposed.



قيم البحث

اقرأ أيضاً

228 - Bo-Yan Xi , Fuzhen Zhang 2021
The purpose of this paper is two-fold: we present some matrix inequalities of log-majorization type for eigenvalues indexed by a sequence; we then apply our main theorem to generalize and improve the Hua-Marcus inequalities. Our results are stronger and more general than the existing ones.
We give some a priori estimates of type sup*inf for Yamabe and prescribed scalar curvature type equations on Riemannian manifolds of dimension >2. The product sup*inf is caracteristic of those equations, like the usual Harnack inequalities for non ne gative harmonic functions. First, we have a lower bound for sup*inf for some classes of PDE on compact manifolds (like prescribed scalar cuvature). We also have an upper bound for the same product but on any Riemannian manifold not necessarily compact. An application of those result is an uniqueness solution for some PDE.
Denote by $P_n$ the set of $ntimes n$ positive definite matrices. Let $D = D_1oplus dots oplus D_k$, where $D_1in P_{n_1}, dots, D_k in P_{n_k}$ with $n_1+cdots + n_k=n$. Partition $Cin P_n$ according to $(n_1, dots, n_k)$ so that $Diag C = C_1oplus dots oplus C_k$. We prove the following weak log majorization result: begin{equation*} lambda (C^{-1}_1D_1oplus cdots oplus C^{-1}_kD_k)prec_{w ,log} lambda(C^{-1}D), end{equation*} where $lambda(A)$ denotes the vector of eigenvalues of $Ain Cnn$. The inequality does not hold if one replaces the vectors of eigenvalues by the vectors of singular values, i.e., begin{equation*} s(C^{-1}_1D_1oplus cdots oplus C^{-1}_kD_k)prec_{w ,log} s(C^{-1}D) end{equation*} is not true. As an application, we provide a generalization of a determinantal inequality of Matic cite[Theorem 1.1]{M}. In addition, we obtain a weak majorization result which is complementary to a determinantal inequality of Choi cite[Theorem 2]{C} and give a weak log majorization open question.
A priori, a posteriori, and mixed type upper bounds for the absolute change in Ritz values of self-adjoint matrices in terms of submajorization relations are obtained. Some of our results prove recent conjectures by Knyazev, Argentati, and Zhu, which extend several known results for one dimensional subspaces to arbitrary subspaces. In addition, we improve Nakatsukasas version of the $tan Theta$ theorem of Davis and Kahan. As a consequence, we obtain new quadratic a posteriori bounds for the absolute change in Ritz values.
314 - Minghua Lin 2014
Let $T=begin{bmatrix} X &Y 0 & Zend{bmatrix}$ be an $n$-square matrix, where $X, Z$ are $r$-square and $(n-r)$-square, respectively. Among other determinantal inequalities, it is proved $det(I_n+T^*T)ge det(I_r+X^*X)cdot det(I_{n-r}+Z^*Z)$ with equality holds if and only if $Y=0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا