ﻻ يوجد ملخص باللغة العربية
We have studied the magnetization depth profiles in a [57Fe(dFe)/Cr(dCr)]x30 multilayer with ultrathin Fe layers and nominal thickness of the chromium spacers dCr 2.0 nm using nuclear resonance scattering of synchrotron radiation. The presence of a broad pure-magnetic half-order (1/2) Bragg reflection has been detected at zero external field. The joint fit of the reflectivity curves and Mossbauer spectra of reflectivity measured near the critical angle and at the magnetic peak reveals that the magnetic structure of the multilayer is formed by two spirals, one in the odd and another one in the even iron layers, with the opposite signs of rotation. The double-spiral structure starts from the surface with the almost antiferromagnetic alignment of the adjacent Fe layers. The rotation of the two spirals leads to nearly ferromagnetic alignment of the two magnetic subsystems at some depth, where the sudden turn of the magnetic vectors by ~180 deg (spin-flop) appears, and both spirals start to rotate in opposite directions. The observation of this unusual double-spiral magnetic structure suggests that the unique properties of giant magneto-resistance devices can be further tailored using ultrathin magnetic layers.
Mixing of atoms at the interface was studied for Mn/Fe magnetic hetero-epitaxial layers on Cu(001) by scanning tunneling microscopy/spectroscopy. The formation of a surface alloy was observed when the Mn layer was thinner than 3 atomic layers. From t
We present a ^{115}In NMR study of the quasi two-dimensional heavy-fermion superconductor CeCoIn_5 believed to host a Fulde-Ferrel-Larkin-Ovchinnkov (FFLO) state. In the vicinity of the upper critical field and with a magnetic field applied parallel
Phase transitions and critical phenomena, which are dominated by fluctuations and correlations, are one of the fields replete with physical paradigms and unexpected discoveries. Especially for two-dimensional magnetism, the limitation of the Ginzburg
The drive to improve the sensitivity of nuclear magnetic resonance (NMR) to smaller and smaller sample volumes has led to the development of a variety of techniques distinct from conventional inductive detection. In this chapter, we focus on the tech
The main obstacle to coherent control of two-level quantum systems is their coupling to an uncontrolled environment. For electron spins in III-V quantum dots, the random environment is mostly given by the nuclear spins in the quantum dot host materia