ﻻ يوجد ملخص باللغة العربية
The security of the Internet of Things (IoT) is receiving considerable interest as the low power constraints and complexity features of many IoT devices are limiting the use of conventional cryptographic techniques. This article provides an overview of recent research efforts on alternative approaches for securing IoT wireless communications at the physical layer, specifically the key topics of key generation and physical layer encryption. These schemes can be implemented and are lightweight, and thus offer practical solutions for providing effective IoT wireless security. Future research to make IoT-based physical layer security more robust and pervasive is also covered.
Over 20 billion Internet of Things devices are set to come online by 2020. Protecting such a large number of underpowered, UI-less, network-connected devices will require a new security paradigm. We argue that solutions dependent on vendor cooperatio
Enabled by the advancement in radio frequency technologies, the convergence of radar and communication systems becomes increasingly promising and is envisioned as a key feature of future 6G networks. Recently, the frequency-hopping (FH) MIMO radar is
Key extraction via measuring a physical quantity is a class of information theoretic key exchange protocols that rely on the physical characteristics of the communication channel to enable the computation of a shared key by two (or more) parties that
The integration of unmanned aerial vehicles (UAVs) into the terrestrial cellular networks is envisioned as one key technology for next-generation wireless communications. In this work, we consider the physical layer security of the communications lin
As a subfield of network coding, physical-layer network coding (PNC) can effectively enhance the throughput of wireless networks by mapping superimposed signals at receiver to other forms of user messages. Over the past twenty years, PNC has received