ﻻ يوجد ملخص باللغة العربية
As a subfield of network coding, physical-layer network coding (PNC) can effectively enhance the throughput of wireless networks by mapping superimposed signals at receiver to other forms of user messages. Over the past twenty years, PNC has received significant research attention and has been widely studied in various communication scenarios, e.g., two-way relay communications (TWRC), nonorthogonal multiple access (NOMA) in 5G networks, random access networks, etc. To ensure network reliability, channel-coded PNC is proposed and related communication techniques are investigated, such as the design of channel code, low-complexity decoding, and cross-layer design. In this article, we briefly review the variants of channel-coded PNC wireless communications with the aim of inspiring future research activities in this area. We also put forth open research problems along with a few selected research directions under PNC-aided frameworks.
A canonical wireless communication system consists of a transmitter and a receiver. The information bit stream is transmitted after coding, modulation, and pulse shaping. Due to the effects of radio frequency (RF) impairments, channel fading, noise a
This paper investigates noncoherent detection in a two-way relay channel operated with physical layer network coding (PNC), assuming FSK modulation and short-packet transmissions. For noncoherent detection, the detector has access to the magnitude bu
The integration of unmanned aerial vehicles (UAVs) into the terrestrial cellular networks is envisioned as one key technology for next-generation wireless communications. In this work, we consider the physical layer security of the communications lin
Leveraging recent progress in physical-layer network coding we propose a new approach to random access: When packets collide, it is possible to recover a linear combination of the packets at the receiver. Over many rounds of transmission, the receive
In this paper, we introduce an intelligent reflecting surface (IRS) to provide a programmable wireless environment for physical layer security. By adjusting the reflecting coefficients, the IRS can change the attenuation and scattering of the inciden