ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies

73   0   0.0 ( 0 )
 نشر من قبل Daniel Gruen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributions $n^i_{PZ}(z)$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $n^i(z)=n^i_{PZ}(z-Delta z^i)$ to correct the mean redshift of $n^i(z)$ for biases in $n^i_{rm PZ}$. The $Delta z^i$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $Delta z^i$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15<z<0.9. This paper details the BPZ and COSMOS procedures, and demonstrates that the cosmological inference is insensitive to details of the $n^i(z)$ beyond the choice of $Delta z^i$. The clustering and COSMOS validation methods produce consistent estimates of $Delta z^i$, with combined uncertainties of $sigma_{Delta z^i}=$0.015, 0.013, 0.011, and 0.022 in the four bins. We marginalize over these in all analyses to follow, which does not diminish the constraining power significantly. Repeating the photo-z procedure using the Directional Neighborhood Fitting (DNF) algorithm instead of BPZ, or using the $n^i(z)$ directly estimated from COSMOS, yields no discernible difference in cosmological inferences.



قيم البحث

اقرأ أيضاً

We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set, covering 1500 square degrees with a median redshift of $0.59$. The catalogues cover two main fields: Stripe 82, and an area overlapping the South Pole Telescope surve y region. We describe our data analysis process and in particular our shape measurement using two independent shear measurement pipelines, METACALIBRATION and IM3SHAPE. The METACALIBRATION catalogue uses a Gaussian model with an innovative internal calibration scheme, and was applied to $riz$-bands, yielding 34.8M objects. The IM3SHAPE catalogue uses a maximum-likelihood bulge/disc model calibrated using simulations, and was applied to $r$-band data, yielding 21.9M objects. Both catalogues pass a suite of null tests that demonstrate their fitness for use in weak lensing science. We estimate the 1$sigma$ uncertainties in multiplicative shear calibration to be $0.013$ and $0.025$ for the METACALIBRATION and IM3SHAPE catalogues, respectively.
101 - C. Chang , A. Pujol , B. Mawdsley 2017
We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than previous work, is constructed over a contiguous $approx1,500 $deg$^2$, covering a comoving volume of $ approx10 $Gpc$^3$. The effects of masking, sampling, and noise are tested using simulations. We generate weak lensing maps from two DES Y1 shear catalogs, Metacalibration and Im3shape, with sources at redshift $0.2<z<1.3,$ and in each of four bins in this range. In the highest signal-to-noise map, the ratio between the mean signal-to-noise in the E-mode and the B-mode map is $sim$1.5 ($sim$2) when smoothed with a Gaussian filter of $sigma_{G}=30$ (80) arcminutes. The second and third moments of the convergence $kappa$ in the maps are in agreement with simulations. We also find no significant correlation of $kappa$ with maps of potential systematic contaminants. Finally, we demonstrate two applications of the mass maps: (1) cross-correlation with different foreground tracers of mass and (2) exploration of the largest peaks and voids in the maps.
123 - J. Prat , C. Sanchez , Y. Fang 2017
We present galaxy-galaxy lensing measurements from 1321 sq. deg. of the Dark Energy Survey (DES) Year 1 (Y1) data. The lens sample consists of a selection of 660,000 red galaxies with high-precision photometric redshifts, known as redMaGiC, split int o five tomographic bins in the redshift range $0.15 < z < 0.9$. We use two different source samples, obtained from the Metacalibration (26 million galaxies) and Im3shape (18 million galaxies) shear estimation codes, which are split into four photometric redshift bins in the range $0.2 < z < 1.3$. We perform extensive testing of potential systematic effects that can bias the galaxy-galaxy lensing signal, including those from shear estimation, photometric redshifts, and observational properties. Covariances are obtained from jackknife subsamples of the data and validated with a suite of log-normal simulations. We use the shear-ratio geometric test to obtain independent constraints on the mean of the source redshift distributions, providing validation of those obtained from other photo-$z$ studies with the same data. We find consistency between the galaxy bias estimates obtained from our galaxy-galaxy lensing measurements and from galaxy clustering, therefore showing the galaxy-matter cross-correlation coefficient $r$ to be consistent with one, measured over the scales used for the cosmological analysis. The results in this work present one of the three two-point correlation functions, along with galaxy clustering and cosmic shear, used in the DES cosmological analysis of Y1 data, and hence the methodology and the systematics tests presented here provide a critical input for that study as well as for future cosmological analyses in DES and other photometric galaxy surveys.
74 - M. Gatti , E. Sheldon , A. Amon 2020
We present and characterise the galaxy shape catalogue from the first 3 years of Dark Energy Survey (DES) observations, over an effective area of ~4143 deg$^2$ of the southern sky. We describe our data analysis process and our self-calibrating shear measurement pipeline METACALIBRATION, which builds and improves upon the pipeline used in the DES Year 1 analysis in several aspects. The DES Year 3 weak-lensing shape catalogue consists of 100,204,026 galaxies, measured in the $riz$ bands, resulting in a weighted source number density of $n_{rm eff} = 5.59$ gal/arcmin$ ^{2}$ and corresponding shape noise $sigma_e = 0.261$. We perform a battery of internal null tests on the catalogue, including tests on systematics related to the point-spread function (PSF) modelling, spurious catalogue B-mode signals, catalogue contamination, and galaxy properties.
We constrain the mass--richness scaling relation of redMaPPer galaxy clusters identified in the Dark Energy Survey Year 1 data using weak gravitational lensing. We split clusters into $4times3$ bins of richness $lambda$ and redshift $z$ for $lambdage q20$ and $0.2 leq z leq 0.65$ and measure the mean masses of these bins using their stacked weak lensing signal. By modeling the scaling relation as $langle M_{rm 200m}|lambda,zrangle = M_0 (lambda/40)^F ((1+z)/1.35)^G$, we constrain the normalization of the scaling relation at the 5.0 per cent level as $M_0 = [3.081 pm 0.075 ({rm stat}) pm 0.133 ({rm sys})] cdot 10^{14} {rm M}_odot$ at $lambda=40$ and $z=0.35$. The richness scaling index is constrained to be $F=1.356 pm 0.051 ({rm stat})pm 0.008 ({rm sys})$ and the redshift scaling index $G=-0.30pm 0.30 ({rm stat})pm 0.06 ({rm sys})$. These are the tightest measurements of the normalization and richness scaling index made to date. We use a semi-analytic covariance matrix to characterize the statistical errors in the recovered weak lensing profiles. Our analysis accounts for the following sources of systematic error: shear and photometric redshift errors, cluster miscentering, cluster member dilution of the source sample, systematic uncertainties in the modeling of the halo--mass correlation function, halo triaxiality, and projection effects. We discuss prospects for reducing this systematic error budget, which dominates the uncertainty on $M_0$. Our result is in excellent agreement with, but has significantly smaller uncertainties than, previous measurements in the literature, and augurs well for the power of the DES cluster survey as a tool for precision cosmology and upcoming galaxy surveys such as LSST, Euclid and WFIRST.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا