ﻻ يوجد ملخص باللغة العربية
We constrain the mass--richness scaling relation of redMaPPer galaxy clusters identified in the Dark Energy Survey Year 1 data using weak gravitational lensing. We split clusters into $4times3$ bins of richness $lambda$ and redshift $z$ for $lambdageq20$ and $0.2 leq z leq 0.65$ and measure the mean masses of these bins using their stacked weak lensing signal. By modeling the scaling relation as $langle M_{rm 200m}|lambda,zrangle = M_0 (lambda/40)^F ((1+z)/1.35)^G$, we constrain the normalization of the scaling relation at the 5.0 per cent level as $M_0 = [3.081 pm 0.075 ({rm stat}) pm 0.133 ({rm sys})] cdot 10^{14} {rm M}_odot$ at $lambda=40$ and $z=0.35$. The richness scaling index is constrained to be $F=1.356 pm 0.051 ({rm stat})pm 0.008 ({rm sys})$ and the redshift scaling index $G=-0.30pm 0.30 ({rm stat})pm 0.06 ({rm sys})$. These are the tightest measurements of the normalization and richness scaling index made to date. We use a semi-analytic covariance matrix to characterize the statistical errors in the recovered weak lensing profiles. Our analysis accounts for the following sources of systematic error: shear and photometric redshift errors, cluster miscentering, cluster member dilution of the source sample, systematic uncertainties in the modeling of the halo--mass correlation function, halo triaxiality, and projection effects. We discuss prospects for reducing this systematic error budget, which dominates the uncertainty on $M_0$. Our result is in excellent agreement with, but has significantly smaller uncertainties than, previous measurements in the literature, and augurs well for the power of the DES cluster survey as a tool for precision cosmology and upcoming galaxy surveys such as LSST, Euclid and WFIRST.
We use weak-lensing shear measurements to determine the mean mass of optically selected galaxy clusters in Dark Energy Survey Science Verification data. In a blinded analysis, we split the sample of more than 8,000 redMaPPer clusters into 15 subsets,
We present the weak lensing mass calibration of the stellar mass based $mu_{star}$ mass proxy for redMaPPer galaxy clusters in the Dark Energy Survey Year 1. For the first time we are able to perform a calibration of $mu_{star}$ at high redshifts, $z
We present galaxy-galaxy lensing measurements from 1321 sq. deg. of the Dark Energy Survey (DES) Year 1 (Y1) data. The lens sample consists of a selection of 660,000 red galaxies with high-precision photometric redshifts, known as redMaGiC, split int
We construct the largest curved-sky galaxy weak lensing mass map to date from the DES first-year (DES Y1) data. The map, about 10 times larger than previous work, is constructed over a contiguous $approx1,500 $deg$^2$, covering a comoving volume of $
We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set, covering 1500 square degrees with a median redshift of $0.59$. The catalogues cover two main fields: Stripe 82, and an area overlapping the South Pole Telescope surve