ﻻ يوجد ملخص باللغة العربية
In this work, we investigate several methods and strategies to learn deep embeddings for face recognition, using joint sample- and set-based optimization. We explain our framework that expands traditional learning with set-based supervision together with the strategies used to maintain set characteristics. We, then, briefly review the related set-based loss functions, and subsequently propose a novel Max-Margin Loss which maximizes maximum possible inter-class margin with assistance of Support Vector Machines (SVMs). It implicitly pushes all the samples towards correct side of the margin with a vector perpendicular to the hyperplane and a strength exponentially growing towards to negative side of the hyperplane. We show that the introduced loss outperform the previous sample-based and set-based ones in terms verification of faces on two commonly used benchmarks.
Cross-resolution face recognition (CRFR), which is important in intelligent surveillance and biometric forensics, refers to the problem of matching a low-resolution (LR) probe face image against high-resolution (HR) gallery face images. Existing shal
Face representation is a crucial step of face recognition systems. An optimal face representation should be discriminative, robust, compact, and very easy-to-implement. While numerous hand-crafted and learning-based representations have been proposed
In this paper, we propose a novel face alignment method that trains deep convolutional network from coarse to fine. It divides given landmarks into principal subset and elaborate subset. We firstly keep a large weight for principal subset to make our
Despite recent advances in deep learning-based face frontalization methods, photo-realistic and illumination preserving frontal face synthesis is still challenging due to large pose and illumination discrepancy during training. We propose a novel Flo
In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network