ترغب بنشر مسار تعليمي؟ اضغط هنا

MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction

71   0   0.0 ( 0 )
 نشر من قبل Ayush Tewari
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network with an expert-designed generative model that serves as decoder. The core innovation is our new differentiable parametric decoder that encapsulates image formation analytically based on a generative model. Our decoder takes as input a code vector with exactly defined semantic meaning that encodes detailed face pose, shape, expression, skin reflectance and scene illumination. Due to this new way of combining CNN-based with model-based face reconstruction, the CNN-based encoder learns to extract semantically meaningful parameters from a single monocular input image. For the first time, a CNN encoder and an expert-designed generative model can be trained end-to-end in an unsupervised manner, which renders training on very large (unlabeled) real world data feasible. The obtained reconstructions compare favorably to current state-of-the-art approaches in terms of quality and richness of representation.



قيم البحث

اقرأ أيضاً

175 - Mallikarjun B R. 2020
The reflectance field of a face describes the reflectance properties responsible for complex lighting effects including diffuse, specular, inter-reflection and self shadowing. Most existing methods for estimating the face reflectance from a monocular image assume faces to be diffuse with very few approaches adding a specular component. This still leaves out important perceptual aspects of reflectance as higher-order global illumination effects and self-shadowing are not modeled. We present a new neural representation for face reflectance where we can estimate all components of the reflectance responsible for the final appearance from a single monocular image. Instead of modeling each component of the reflectance separately using parametric models, our neural representation allows us to generate a basis set of faces in a geometric deformation-invariant space, parameterized by the input light direction, viewpoint and face geometry. We learn to reconstruct this reflectance field of a face just from a monocular image, which can be used to render the face from any viewpoint in any light condition. Our method is trained on a light-stage training dataset, which captures 300 people illuminated with 150 light conditions from 8 viewpoints. We show that our method outperforms existing monocular reflectance reconstruction methods, in terms of photorealism due to better capturing of physical premitives, such as sub-surface scattering, specularities, self-shadows and other higher-order effects.
The reconstruction of dense 3D models of face geometry and appearance from a single image is highly challenging and ill-posed. To constrain the problem, many approaches rely on strong priors, such as parametric face models learned from limited 3D sca n data. However, prior models restrict generalization of the true diversity in facial geometry, skin reflectance and illumination. To alleviate this problem, we present the first approach that jointly learns 1) a regressor for face shape, expression, reflectance and illumination on the basis of 2) a concurrently learned parametric face model. Our multi-level face model combines the advantage of 3D Morphable Models for regularization with the out-of-space generalization of a learned corrective space. We train end-to-end on in-the-wild images without dense annotations by fusing a convolutional encoder with a differentiable expert-designed renderer and a self-supervised training loss, both defined at multiple detail levels. Our approach compares favorably to the state-of-the-art in terms of reconstruction quality, better generalizes to real world faces, and runs at over 250 Hz.
Monocular depth reconstruction of complex and dynamic scenes is a highly challenging problem. While for rigid scenes learning-based methods have been offering promising results even in unsupervised cases, there exists little to no literature addressi ng the same for dynamic and deformable scenes. In this work, we present an unsupervised monocular framework for dense depth estimation of dynamic scenes, which jointly reconstructs rigid and non-rigid parts without explicitly modelling the camera motion. Using dense correspondences, we derive a training objective that aims to opportunistically preserve pairwise distances between reconstructed 3D points. In this process, the dense depth map is learned implicitly using the as-rigid-as-possible hypothesis. Our method provides promising results, demonstrating its capability of reconstructing 3D from challenging videos of non-rigid scenes. Furthermore, the proposed method also provides unsupervised motion segmentation results as an auxiliary output.
In this work, we investigate several methods and strategies to learn deep embeddings for face recognition, using joint sample- and set-based optimization. We explain our framework that expands traditional learning with set-based supervision together with the strategies used to maintain set characteristics. We, then, briefly review the related set-based loss functions, and subsequently propose a novel Max-Margin Loss which maximizes maximum possible inter-class margin with assistance of Support Vector Machines (SVMs). It implicitly pushes all the samples towards correct side of the margin with a vector perpendicular to the hyperplane and a strength exponentially growing towards to negative side of the hyperplane. We show that the introduced loss outperform the previous sample-based and set-based ones in terms verification of faces on two commonly used benchmarks.
145 - Jun Liu , Qing Li , Rui Cao 2020
Predicting depth from a single image is an attractive research topic since it provides one more dimension of information to enable machines to better perceive the world. Recently, deep learning has emerged as an effective approach to monocular depth estimation. As obtaining labeled data is costly, there is a recent trend to move from supervised learning to unsupervised learning to obtain monocular depth. However, most unsupervised learning methods capable of achieving high depth prediction accuracy will require a deep network architecture which will be too heavy and complex to run on embedded devices with limited storage and memory spaces. To address this issue, we propose a new powerful network with a recurrent module to achieve the capability of a deep network while at the same time maintaining an extremely lightweight size for real-time high performance unsupervised monocular depth prediction from video sequences. Besides, a novel efficient upsample block is proposed to fuse the features from the associated encoder layer and recover the spatial size of features with the small number of model parameters. We validate the effectiveness of our approach via extensive experiments on the KITTI dataset. Our new model can run at a speed of about 110 frames per second (fps) on a single GPU, 37 fps on a single CPU, and 2 fps on a Raspberry Pi 3. Moreover, it achieves higher depth accuracy with nearly 33 times fewer model parameters than state-of-the-art models. To the best of our knowledge, this work is the first extremely lightweight neural network trained on monocular video sequences for real-time unsupervised monocular depth estimation, which opens up the possibility of implementing deep learning-based real-time unsupervised monocular depth prediction on low-cost embedded devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا