ﻻ يوجد ملخص باللغة العربية
Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling. Thus far, atomically-thin p-n junctions, metal-semiconductor contacts, and metal-insulator barriers have been demonstrated. While 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions is also necessary. Here, we report the direct synthesis of sub-nanometer-wide 1D MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalyzed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Using molecular dynamics simulations, we have identified other combinations of 2D materials where 1D channels can also be formed. The electronic band structure of these 1D channels offer the promise of carrier confinement in a direct-gap material and charge separation needed to access the ultimate length scales necessary for future electronic applications.
The relation between unusual Mexican-hat band dispersion, ferromagnetism and ferroelasticity is investigated using a combination of analytical, first-principles and phenomenological methods. The class of material with Mexican-hat band edge is studied
Having smaller energy density than batteries, supercapacitors have exceptional power density and cyclability. Their energy density can be increased using ionic liquids and electrodes with sub-nanometer pores, but this tends to reduce their power dens
Two-dimensional materials are emerging as a promising platform for ultrathin channels in field-effect transistors. To this aim, novel high-mobility semiconductors need to be found or engineered. While extrinsic mechanisms can in general be minimized
Low-dimensional materials differ from their bulk counterpart in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding ener
Diverse parallel stitched two-dimensional heterostructures are synthesized, including metal-semiconductor (graphene-MoS2), semiconductor-semiconductor (WS2-MoS2), and insulator-semiconductor (hBN-MoS2), directly through selective sowing of aromatic m