ﻻ يوجد ملخص باللغة العربية
Diverse parallel stitched two-dimensional heterostructures are synthesized, including metal-semiconductor (graphene-MoS2), semiconductor-semiconductor (WS2-MoS2), and insulator-semiconductor (hBN-MoS2), directly through selective sowing of aromatic molecules as the seeds in chemical vapor deposition (CVD) method. Our methodology enables the large-scale fabrication of lateral heterostructures with arbitrary patterns, and clean and precisely aligned interfaces, which offers tremendous potential for its application in integrated circuits.
We present a novel methodology to synthesize two-dimensional (2D) lateral heterostructures of graphene and MoS2 sheets with molecular carbon nanomembranes (CNMs), which is based on electron beam induced stitching. Monolayers of graphene and MoS2 were
The relation between unusual Mexican-hat band dispersion, ferromagnetism and ferroelasticity is investigated using a combination of analytical, first-principles and phenomenological methods. The class of material with Mexican-hat band edge is studied
The growing library of two-dimensional layered materials is providing researchers with a wealth of opportunity to explore and tune physical phenomena at the nanoscale. Here, we review the experimental and theoretical state-of-art concerning the elect
Two-dimensional materials are emerging as a promising platform for ultrathin channels in field-effect transistors. To this aim, novel high-mobility semiconductors need to be found or engineered. While extrinsic mechanisms can in general be minimized
Low-dimensional materials differ from their bulk counterpart in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding ener