ﻻ يوجد ملخص باللغة العربية
We propose new off-shell models for spontaneously broken local ${cal N}=2$ supersymmetry, in which the supergravity multiplet couples to nilpotent Goldstino superfields that contain either a gauge one-form or a gauge two-form in addition to spin-1/2 Goldstone fermions and auxiliary fields. In the case of ${cal N}=2$ Poincare supersymmetry, we elaborate on the concept of twisted chiral superfields and present a nilpotent ${cal N}=2$ superfield that underlies the cubic nilpotency conditions given in arXiv:1707.03414 in terms of constrained ${cal N}=1$ superfields.
We present off-shell N=2 supergravity actions, which exhibit spontaneously broken local supersymmetry and allow for de Sitter vacua for certain values of the parameters. They are obtained by coupling the standard N=2 supergravity-matter systems to th
Considered are ${cal N}=2, SU(N_c)$ or $U(N_c)$ SQCD with $N_F<2N_c-1$ quark flavors with the quark mass term $m{rm Tr},({bar Q} Q)$ in the superpotential. ${cal N}=2$ supersymmetry is softly broken down to ${cal N}=1$ by the mass term $mu_{rm x}{rm
We study partial supersymmetry breaking from ${cal N}=2$ to ${cal N}=1$ by adding non-linear terms to the ${cal N}=2$ supersymmetry transformations. By exploiting the necessary existence of a deformed supersymmetry algebra for partial breaking to occ
We derive the planar limit of 2- and 3-point functions of single-trace chiral primary operators of ${cal N}=2$ SQCD on $S^4$, to all orders in the t Hooft coupling. In order to do so, we first obtain a combinatorial expression for the planar free ene
We introduce two new N = (2, 2) vector multiplets that couple naturally to generalized Kahler geometries. We describe their kinetic actions as well as their matter couplings both in N = (2, 2) and N = (1, 1) superspace.