ﻻ يوجد ملخص باللغة العربية
We derive the planar limit of 2- and 3-point functions of single-trace chiral primary operators of ${cal N}=2$ SQCD on $S^4$, to all orders in the t Hooft coupling. In order to do so, we first obtain a combinatorial expression for the planar free energy of a hermitian matrix model with an infinite number of arbitrary single and double trace terms in the potential; this solution might have applications in many other contexts. We then use these results to evaluate the analogous planar correlation functions on ${mathbb R}^4$. Specifically, we compute all the terms with a single value of the $zeta$ function for a few planar 2- and 3-point functions, and conjecture general formulas for these terms for all 2- and 3-point functions on ${mathbb R}^4$.
We consider a family of $mathcal{N}=2$ superconformal field theories in four dimensions, defined as $mathbb{Z}_q$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory. We compute the chiral/anti-chiral correlation functions at a perturbative level, us
We obtain the perturbative expansion of the free energy on $S^4$ for four dimensional Lagrangian ${cal N}=2$ superconformal field theories, to all orders in the t Hooft coupling, in the planar limit. We do so by using supersymmetric localization, aft
We compute the planar limit of both the free energy and the expectation value of the $1/2$ BPS Wilson loop for four dimensional ${cal N}=2$ superconformal quiver theories, with a product of SU($N$)s as gauge group and bi-fundamental matter. Supersymm
We study the theory of a single fundamental fermion and boson coupled to Chern-Simons theory at leading order in the large $N$ limit. Utilizing recent progress in understanding the Higgsed phase in Chern-Simons-Matter theories, we compute the quantum
We consider a new large-N limit, in which the t Hooft coupling grows with N. We argue that a class of large-N equivalences, which is known to hold in the t Hooft limit, can be extended to this very strongly coupled limit. Hence this limit may lead to