ﻻ يوجد ملخص باللغة العربية
The mass spectra and decay properties of heavy quarkonia are computed in nonrelativistic quark-antiquark Cornell potential model. We have employed the numerical solution of Schrodinger equation to obtain their mass spectra using only four parameters namely quark mass ($m_c$, $m_b$) and confinement strength ($A_{cbar c}$, $A_{bbar b}$). The spin hyperfine, spin-orbit and tensor components of the one gluon exchange interaction are computed perturbatively to determine the mass spectra of excited $S$, $P$, $D$ and $F$ states. Digamma, digluon and dilepton decays of these mesons are computed using the model parameters and numerical wave functions. The predicted spectroscopy and decay properties for quarkonia are found to be consistent with available experimental observations and results from other theoretical models. We also compute mass spectra and life time of the $B_c$ meson without additional parameters. The computed electromagnetic transition widths of heavy quarkonia and $B_c$ mesons are in tune with available experimental data and other theoretical approaches.
Recent discoveries by Belle and BESIII of charged exotic quarkonium-like resonances provide fresh impetus for study of heavy exotic hadrons. In the limit N_c --> infinity, M_Q --> infinity, the (Qbar Q qbar q) tetraquarks (TQ-s) are expected to be na
We show how it is possible to define and compute the potential between $q$ and $bar q$ external sources in the singlet and octet (adjoint) representation of the colour group.
We have systematically calculated the mass spectra for S-wave and P-wave fully-charm $cbar{c}cbar{c}$ and fully-bottom $bbar{b}bbar{b}$ tetraquark states in the $mathbf{8}_{[Qbar{Q}]}otimes mathbf{8}_{[Qbar{Q}]}$ color configuration, by using the mom
We study the $qbar{q}$ potential in strongly coupled non-conformal field theories with a non-trivial renormalization group flow via holography. We focus on the properties of this potential at an inter-quark separation $L$ large compared to the charac
Within the framework of QCD sum rules, we have investigated the tetraquark states with three heavy quarks. We systematically construct the interpolating currents for the possible $ccbar{c}bar{q}$, $ccbar{b}bar{q}$, $bcbar{b}bar{q}$, $bbbar{b}bar{q}$