ترغب بنشر مسار تعليمي؟ اضغط هنا

Triply heavy $QQbar Qbar q$ tetraquark states

168   0   0.0 ( 0 )
 نشر من قبل Wei Chen
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the framework of QCD sum rules, we have investigated the tetraquark states with three heavy quarks. We systematically construct the interpolating currents for the possible $ccbar{c}bar{q}$, $ccbar{b}bar{q}$, $bcbar{b}bar{q}$, $bbbar{b}bar{q}$ tetraquark states with quantum numbers $J^{P}=0^{+}$ and $J^{P}=1^{+}$. Using these interpolating currents, we have calculated the two-point correlation functions and extracted the mass spectra for the above tetraquark states. We also discuss the decay patterns of these tetraquarks, and notice that the $ccbar{c}bar{q}$, $ccbar{b}bar{q}$, $bcbar{b}bar{q}$ may decay quickly with a narrow width due to their mass spectra. The $bbbar{b}bar{q}$ tetraquarks are expected to be very narrow resonances since their OZI-allowed decay modes are kinematically forbidden. These states may be searched for in the final states with a $B$ meson plus a light meson or photon.



قيم البحث

اقرأ أيضاً

157 - Jing Wu , Yan-Rui Liu , Kan Chen 2016
In the framework of the color-magnetic interaction, we systematically investigate the mass spectrum of the tetraquark states composed of four heavy quarks with the $QQbar Qbar Q$ configuration in this work. We also show their strong decay patterns. S table or narrow states in the $bbbar{b}bar{c}$ and $bcbar{b}bar{c}$ systems are found to be possible. We hope the studies shall be helpful to the experimental search for heavy-full exotic tetraquark states.
We have systematically calculated the mass spectra for S-wave and P-wave fully-charm $cbar{c}cbar{c}$ and fully-bottom $bbar{b}bbar{b}$ tetraquark states in the $mathbf{8}_{[Qbar{Q}]}otimes mathbf{8}_{[Qbar{Q}]}$ color configuration, by using the mom ent QCD sum rule method. The masses for the fully-charm $cbar ccbar c$ tetraquark states are predicted about $6.3-6.5$ GeV for S-wave channels and $7.0-7.2$ GeV for P-wave channels. These results suggest the possibility that there are some $mathbf{8}_{[cbar{c}]}otimes mathbf{8}_{[cbar{c}]}$ components in LHCbs di-$J/psi$ structures. For the fully-bottom $bbar{b}bbar{b}$ system, their masses are calculated around 18.2 GeV for S-wave tetraquark states while 18.4-18.6 GeV for P-wave ones, which are below the $eta_beta_b$ and $Upsilon(1S)Upsilon(1S)$ two-meson decay thresholds.
In this work, we study systematically the mass splittings of the $qqbar{Q}bar{Q}$ ($q=u$, $d$, $s$ and $Q=c$, $b$) tetraquark states with the color-magnetic interaction by considering color mixing effects and estimate roughly their masses. We find th at the color mixing effect is relatively important for the $J^P=0^+$ states and possible stable tetraquarks exist in the $nnbar{Q}bar{Q}$ ($n=u$, $d$) and $nsbar{Q}bar{Q}$ systems either with $J=0$ or with $J=1$. Possible decay patterns of the tetraquarks are briefly discussed.
In the framework of an extended chromomagnetic model, we systematically study the mass spectrum of the $S$-wave $qQbar{Q}bar{Q}$ tetraquarks. Their mass spectra are mainly determined by the color interaction. For the $qcbar{c}bar{c}$, $qbbar{c}bar{c} $ and $qbbar{b}bar{b}$ tetraquarks, the color interaction favors the color-sextet $ket{(qQ)^{6_{c}}(bar{Q}bar{Q})^{bar{6}_{c}}}$ configuration over the color-triplet $ket{(qQ)^{bar{3}_{c}}(bar{Q}bar{Q})^{3_{c}}}$ one. But for the $qcbar{b}bar{b}$ tetraquarks, the color-triplet configuration is favored. We find no stable states which lie below the thresholds of two pseudoscalar mesons. The lowest axial-vector states with the $qQbar{b}bar{b}$ flavor configuration may be narrow. They lie just above the thresholds of two pseudoscalar mesons, but cannot decay into these channels because of the conservation of the angular momentum and parity.
We calculate the masses of the $QQbar{q}bar{q}$ ($Q=c,b$; $q=u,d,s$) tetraquark states with the aid of heavy diquark-antiquark symmetry (HDAS) and the chromomagnetic interaction (CMI) model. The masses of the highest-spin ($J=2$) tetraquarks that hav e only the $(QQ)_{bar{3}_c}(bar{q}bar{q})_{3_c}$ color structure are related with those of conventional hadrons using HDAS. Thereafter, the masses of their partner states are determined with the mass splittings in the CMI model. Our numerical results reveal that: (i) the lightest $ccbar{n}bar{n}$ ($n=u,d$) is an $I(J^P)=0(1^+)$ state around 3929 MeV (53 MeV above the $DD^*$ threshold) and none of the double-charm tetraquarks are stable; (ii) the stable double-bottom tetraquarks are the lowest $0(1^+)$ $bbbar{n}bar{n}$ around 10488 MeV ($approx116$ MeV below the $BB^*$ threshold) and the lowest $1/2(1^+)$ $bbbar{n}bar{s}$ around 10671 MeV ($approx20$ MeV below the $BB_s^*/B_sB^*$ threshold); and (iii) the two lowest $bcbar{n}bar{n}$ tetraquarks, namely the lowest $0(0^+)$ around 7167 MeV and the lowest $0(1^+)$ around 7223 MeV, are near-threshold states. Moreover, we discuss the constraints on the masses of double-heavy hadrons. Specifically, for the lowest nonstrange tetraquarks, we obtain $T_{cc}<3965$ MeV, $T_{bb}<10627$ MeV, and $T_{bc}<7199$ MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا