ترغب بنشر مسار تعليمي؟ اضغط هنا

Rigorous constraints on the matrix elements of the energy-momentum tensor

76   0   0.0 ( 0 )
 نشر من قبل Peter Lowdon
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The structure of the matrix elements of the energy-momentum tensor play an important role in determining the properties of the form factors $A(q^{2})$, $B(q^{2})$ and $C(q^{2})$ which appear in the Lorentz covariant decomposition of the matrix elements. In this paper we apply a rigorous frame-independent distributional-matching approach to the matrix elements of the Poincar{e} generators in order to derive constraints on these form factors as $q rightarrow 0$. In contrast to the literature, we explicitly demonstrate that the vanishing of the anomalous gravitomagnetic moment $B(0)$ and the condition $A(0)=1$ are independent of one another, and that these constraints are not related to the specific properties or conservation of the individual Poincar{e} generators themselves, but are in fact a consequence of the physical on-shell requirement of the states in the matrix elements and the manner in which these states transform under Poincar{e} transformations.



قيم البحث

اقرأ أيضاً

If physics beyond the Standard Model enters well above the electroweak scale, its low-energy effects are described by Standard Model Effective Field Theory. Already at dimension six many operators involve the antisymmetric quark tensor $bar q sigma^{ mu u} q$, whose matrix elements are difficult to constrain from experiment, Ward identities, or low-energy theorems, in contrast to the corresponding vector and axial-vector or even scalar and pseudoscalar currents. However, with normalizations determined from lattice QCD, analyticity and unitarity often allow one to predict the momentum dependence in a large kinematic range. Starting from recent results in the meson sector, we extend this method to the nucleon case and, in combination with pole dominance, provide a comprehensive assessment of the current status of the nucleon form factors of the quark tensor.
We report results on the proton mass decomposition and also on related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of $N_f = 2+1$ DWF configurations with three lattice spacings and three volu mes, and several pion masses including the physical pion mass. With fully non-perturbative renormalization (and universal normalization on both quark and gluon), we find that the quark energy and glue field energy contribute 33(4)(4)% and 37(5)(4)% respectively in the $overline{MS}$ scheme at $mu = 2$ GeV. A quarter of the trace anomaly gives a 23(1)(1)% contribution to the proton mass based on the sum rule, given 9(2)(1)% contribution from the $u, d,$ and $s$ quark scalar condensates. The $u,d,s$ and glue momentum fractions in the $overline{MS}$ scheme are in good agreement with global analyses at $mu = 2$ GeV.
249 - Cedric Lorce , Peter Lowdon 2020
In this work we investigate the matrix elements of the energy-momentum tensor for massless on-shell states in four-dimensional unitary, local, and Poincare covariant quantum field theories. We demonstrate that these matrix elements can be parametrise d in terms of covariant multipoles of the Lorentz generators, and that this gives rise to a form factor decomposition in which the helicity dependence of the states is factorised. Using this decomposition we go on to explore some of the consequences for conformal field theories, deriving the explicit analytic conditions imposed by conformal symmetry, and using examples to illustrate that they uniquely fix the form of the matrix elements. We also provide new insights into the constraints imposed by the existence of massless particles, showing in particular that massless free theories are necessarily conformal.
The probably most fundamental information about a particle is contained in the matrix elements of its energy momentum tensor (EMT) which are accessible from hard-exclusive reactions via generalized parton distribution functions. The spin decompositio n of the nucleon and Ji sum rule are one example. Less prominent but equally important information is encoded in the stress tensor, related to the spatial components of the EMT, which shows in detail how the strong forces inside the nucleon balance to form a bound state. This provides not only unique insights on nucleon structure. It also leads to fascinating new applications to hadron spectroscopy which allow us to formulate new interpretations of the charmonium-nucleon pentaquarks discovered by LHCb. Recent progress is reviewed in this short overview article.
The Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix ele ments of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on the $N_f=2+1+1$ MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of $g_A = 1.213(26)$ with a quark-mass-dependent renormalization coefficient.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا