ﻻ يوجد ملخص باللغة العربية
The structure of the matrix elements of the energy-momentum tensor play an important role in determining the properties of the form factors $A(q^{2})$, $B(q^{2})$ and $C(q^{2})$ which appear in the Lorentz covariant decomposition of the matrix elements. In this paper we apply a rigorous frame-independent distributional-matching approach to the matrix elements of the Poincar{e} generators in order to derive constraints on these form factors as $q rightarrow 0$. In contrast to the literature, we explicitly demonstrate that the vanishing of the anomalous gravitomagnetic moment $B(0)$ and the condition $A(0)=1$ are independent of one another, and that these constraints are not related to the specific properties or conservation of the individual Poincar{e} generators themselves, but are in fact a consequence of the physical on-shell requirement of the states in the matrix elements and the manner in which these states transform under Poincar{e} transformations.
If physics beyond the Standard Model enters well above the electroweak scale, its low-energy effects are described by Standard Model Effective Field Theory. Already at dimension six many operators involve the antisymmetric quark tensor $bar q sigma^{
We report results on the proton mass decomposition and also on related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of $N_f = 2+1$ DWF configurations with three lattice spacings and three volu
In this work we investigate the matrix elements of the energy-momentum tensor for massless on-shell states in four-dimensional unitary, local, and Poincare covariant quantum field theories. We demonstrate that these matrix elements can be parametrise
The probably most fundamental information about a particle is contained in the matrix elements of its energy momentum tensor (EMT) which are accessible from hard-exclusive reactions via generalized parton distribution functions. The spin decompositio
The Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix ele