ﻻ يوجد ملخص باللغة العربية
In this work we investigate the matrix elements of the energy-momentum tensor for massless on-shell states in four-dimensional unitary, local, and Poincare covariant quantum field theories. We demonstrate that these matrix elements can be parametrised in terms of covariant multipoles of the Lorentz generators, and that this gives rise to a form factor decomposition in which the helicity dependence of the states is factorised. Using this decomposition we go on to explore some of the consequences for conformal field theories, deriving the explicit analytic conditions imposed by conformal symmetry, and using examples to illustrate that they uniquely fix the form of the matrix elements. We also provide new insights into the constraints imposed by the existence of massless particles, showing in particular that massless free theories are necessarily conformal.
The vacuum state -- or any other state of finite energy -- is not an eigenstate of any smeared (averaged) local quantum field. The outcomes (spectral values) of repeated measurements of that averaged local quantum field are therefore distributed acco
Conformal field theories play a central role in theoretical physics with many applications ranging from condensed matter to string theory. The conformal bootstrap studies conformal field theories using mathematical consistency conditions and has seen
In this paper, we demonstrate the emergence of nonlinear gravitational equations directly from the physics of a broad class of conformal field theories. We consider CFT excited states defined by adding sources for scalar primary or stress tensor oper
We study constraints coming from the modular invariance of the partition function of two-dimensional conformal field theories. We constrain the spectrum of CFTs in the presence of holomorphic and anti-holomorphic currents using the semi-definite prog
We derive constraints on three-point functions involving the stress tensor, $T$, and a conserved $U(1)$ current, $j$, in 2+1 dimensional conformal field theories that violate parity, using conformal collider bounds introduced by Hofman and Maldacena.