ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytic constraints on the energy-momentum tensor in conformal field theories

250   0   0.0 ( 0 )
 نشر من قبل Peter Lowdon
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we investigate the matrix elements of the energy-momentum tensor for massless on-shell states in four-dimensional unitary, local, and Poincare covariant quantum field theories. We demonstrate that these matrix elements can be parametrised in terms of covariant multipoles of the Lorentz generators, and that this gives rise to a form factor decomposition in which the helicity dependence of the states is factorised. Using this decomposition we go on to explore some of the consequences for conformal field theories, deriving the explicit analytic conditions imposed by conformal symmetry, and using examples to illustrate that they uniquely fix the form of the matrix elements. We also provide new insights into the constraints imposed by the existence of massless particles, showing in particular that massless free theories are necessarily conformal.



قيم البحث

اقرأ أيضاً

The vacuum state -- or any other state of finite energy -- is not an eigenstate of any smeared (averaged) local quantum field. The outcomes (spectral values) of repeated measurements of that averaged local quantum field are therefore distributed acco rding to a non-trivial probability distribution. In this paper, we study probability distributions for the smeared stress tensor in two dimensional conformal quantum field theory. We first provide a new general method for this task based on the famous conformal welding problem in complex analysis. Secondly, we extend the known moment generating function method of Fewster, Ford and Roman. Our analysis provides new explicit probability distributions for the smeared stress tensor in the vacuum for various infinite classes of smearing functions. All of these turn out to be given in the end by a shifted Gamma distribution, pointing, perhaps, at a distinguished role of this distribution in the problem at hand.
86 - Johan Henriksson 2020
Conformal field theories play a central role in theoretical physics with many applications ranging from condensed matter to string theory. The conformal bootstrap studies conformal field theories using mathematical consistency conditions and has seen great progress over the last decade. In this thesis we present an implementation of analytic bootstrap methods for perturbative conformal field theories in dimensions greater than two, which we achieve by combining large spin perturbation theory with the Lorentzian inversion formula. In the presence of a small expansion parameter, not necessarily the coupling constant, we develop this into a systematic framework, applicable to a wide range of theories. The first two chapters provide the necessary background and a review of the analytic bootstrap. This is followed by a chapter which describes the method in detail, taking the form of a practical guide to large spin perturbation theory by means of a step-by-step implementation. The second part of the thesis presents several explicit implementations of the framework, taking examples from a number of well-studied conformal field theories. We show how many literature results can be reproduced from a purely bootstrap perspective and how a variety of new results can be derived.
In this paper, we demonstrate the emergence of nonlinear gravitational equations directly from the physics of a broad class of conformal field theories. We consider CFT excited states defined by adding sources for scalar primary or stress tensor oper ators to the Euclidean path integral defining the vacuum state. For these states, we show that up to second order in the sources, the entanglement entropy for all ball-shaped regions can always be represented geometrically (via the Ryu-Takayanagi formula) by an asymptotically AdS geometry. We show that such a geometry necessarily satisfies Einsteins equations perturbatively up to second order, with a stress energy tensor arising from matter fields associated with the sourced primary operators. We make no assumptions about AdS/CFT duality, so our work serves as both a consistency check for the AdS/CFT correspondence and a direct demonstration that spacetime and gravitational physics can emerge from the description of entanglement in conformal field theories.
We study constraints coming from the modular invariance of the partition function of two-dimensional conformal field theories. We constrain the spectrum of CFTs in the presence of holomorphic and anti-holomorphic currents using the semi-definite prog ramming. In particular, we find the bounds on the twist gap for the non-current primaries depend dramatically on the presence of holomorphic currents, showing numerous kinks and peaks. Various rational CFTs are realized at the numerical boundary of the twist gap, saturating the upper limits on the degeneracies. Such theories include Wess-Zumino-Witten models for the Delignes exceptional series, the Monster CFT and the Baby Monster CFT. We also study modular constraints imposed by $mathcal{W}$-algebras of various type and observe that the bounds on the gap depend on the choice of $mathcal{W}$-algebra in the small central charge region.
We derive constraints on three-point functions involving the stress tensor, $T$, and a conserved $U(1)$ current, $j$, in 2+1 dimensional conformal field theories that violate parity, using conformal collider bounds introduced by Hofman and Maldacena. Conformal invariance allows parity-odd tensor-structures for the $langle T T T rangle$ and $ langle j j T rangle$ correlation functions which are unique to three space-time dimensions. Let the parameters which determine the $langle T T T rangle$ correlation function be $t_4$ and $alpha_T$ , where $alpha_T$ is the parity-violating contribution. Similarly let the parameters which determine $ langle j j T rangle$ correlation function be $a_2$, and $alpha_J$ , where $alpha_J$ is the parity-violating contribution. We show that the parameters $(t_4, alpha_T)$ and $(a_2, alpha_J)$ are bounded to lie inside a disc at the origin of the $t_4$ - $alpha_T$ plane and the $a_2$ - $alpha_J$ plane respectively. We then show that large $N$ Chern-Simons theories coupled to a fundamental fermion/boson lie on the circle which bounds these discs. The `t Hooft coupling determines the location of these theories on the boundary circles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا