ترغب بنشر مسار تعليمي؟ اضغط هنا

Stringent limits on the masses of the supermassive black holes in seven nearby galaxies

114   0   0.0 ( 0 )
 نشر من قبل Ilaria Pagotto
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. Pagotto




اسأل ChatGPT حول البحث

We present new stringent limits on the mass $M_{bh}$ of the central supermassive black hole for a sample of 7 nearby galaxies. Our $M_{bh}$ estimates are based on the dynamical modeling of the central width of the nebular emission lines measured over subarcsecond apertures with the Hubble Space Telescope. The central stellar velocity dispersion $sigma_c$ of the sample galaxies is derived from new long-slit spectra from ground-based observations and the bulge effective radius is obtained from a two-dimensional photometric decomposition of the i-band images from the Sloan Digital Sky Survey. The derived stringent $M_{bh}$ limits run parallel and above the $M_{bh}-sigma_c$ relation with no systematic trend depending on the galaxy distance or morphology. This gives further support to previous findings suggesting that the nuclear gravitational potential is remarkably well traced by the width of the nebular lines when the gas is centrally peaked. With our investigation, the number of galaxies with stringent $M_{bh}$ limits obtained from nebular-line width increases to 114 and can be used for studying the scaling relations between $M_{bh}$ and properties of their host galaxies.



قيم البحث

اقرأ أيضاً

Observations of H$_2$O masers from circumnuclear disks in active galaxies for the Megamaser Cosmology Project allow accurate measurement of the mass of supermassive black holes (BH) in these galaxies. We present the Very Long Baseline Interferometry (VLBI) images and kinematics of water maser emission in six active galaxies: NGC~1194, NGC~2273, NGC~2960 (Mrk~1419), NGC~4388, NGC~6264 and NGC~6323. We use the Keplerian rotation curves of these six megamaser galaxies, plus a seventh previously published, to determine accurate enclosed masses within the central $sim0.3$ pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases. We also set lower limits to the central mass densities of between 0.12 and 60 $times 10^{10} M_{odot}$~pc$^{-3}$. For six of the seven disks, the high central densities rule out clusters of stars or stellar remnants as the central objects, and this result further supports our assumption that the enclosed mass can be attributed predominantly to a supermassive black hole. The seven BHs have masses ranging between 0.76 and 6.5$times$10$^7 M_{odot}$. The BH mass errors are $approx11$%, dominated by the uncertainty of the Hubble constant. We compare the megamaser BH mass determination with other BH mass measurement techniques. The BH mass based on virial estimation in four galaxies is consistent with the megamaser BH mass given the latest empirical value of $langle f rangle$, but the virial mass uncertainty is much greater. MCP observations continue and we expect to obtain more maser BH masses in the future.
140 - D. Lena , A. Robinson , A. Marconi 2014
The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed HST archival images of 14 nearby core ellipticals, finding evidence for small ($lesssim 10$ pc) displacements between the AGN (locating the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. 2010. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few Gyr. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kpc-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.
We present a study of relations between the masses of the central supermassive black holes (SMBHs) and the atmospheric gas temperatures and luminosities measured within a range of radii between $R_{rm e}$ and 5$R_{rm e}$, for a sample of 47 early-typ e galaxies observed by the {it Chandra X-ray Observatory}. We report the discovery of a tight correlation between the atmospheric temperatures of the brightest cluster/group galaxies (BCGs) and their central SMBH masses. Furthermore, our hydrostatic analysis reveals an approximately linear correlation between the total masses of BCGs ($M_{rm tot}$) and their central SMBH masses ($M_{rm BH}$). State-of-the-art cosmological simulations show that the SMBH mass could be determined by the binding energy of the halo through radiative feedback during the rapid black hole growth by accretion, while for the most massive galaxies mergers are the chief channel of growth. In the scenario of a simultaneous growth of central SMBHs and their host galaxies through mergers, the observed linear correlation could be a natural consequence of the central limit theorem.
The ngVLA will facilitate deep surveys capable of detecting the faint and compact signatures of accreting supermassive black holes (SMBHs) with masses below one million solar-masses hosted by low-mass ($< 10^9$ solar-masses) galaxies. This will provi de important new insights on both the origins of supermassive black holes and the possible impact of active galactic nucleus-driven feedback in a currently unexplored mass regime.
In this work, we analyze the role of AGN feedback in quenching star formation for massive, central galaxies in the local Universe. In particular, we compare the prediction of two semi-analytic models (L-GALAXIES and SAGE) featuring different schemes for AGN feedback, with the SDSS DR7 taking advantage of a novel technique for identifying central galaxies in an observational dataset. This enables us to study the correlation between the model passive fractions, which is predicted to be suppressed by feedback from an AGN, and the observed passive fractions in an observationally motivated parameter space. While the passive fractions for observed central galaxies show a good correlation with stellar mass and bulge mass, passive fractions in L-GALAXIES correlate with the halo and black hole mass. For SAGE, the passive fraction correlate with the bulge mass as well. Among the two models, SAGE has a smaller scatter in the black hole - bulge mass (M_BH - M_Bulge) relation and a slope that agrees better with the most recent observations at z sim 0. Despite the more realistic prescription of radio mode feedback in SAGE, there are still tensions left with the observed passive fractions and the distribution of quenched galaxies. These tensions may be due to the treatment of galaxies living in non-resolved substructures and the resulting higher merger rates that could bring cold gas which is available for star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا