ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlations between supermassive black holes, hot atmospheres, and the total masses of early type galaxies

79   0   0.0 ( 0 )
 نشر من قبل Kiran Lakhchaura
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of relations between the masses of the central supermassive black holes (SMBHs) and the atmospheric gas temperatures and luminosities measured within a range of radii between $R_{rm e}$ and 5$R_{rm e}$, for a sample of 47 early-type galaxies observed by the {it Chandra X-ray Observatory}. We report the discovery of a tight correlation between the atmospheric temperatures of the brightest cluster/group galaxies (BCGs) and their central SMBH masses. Furthermore, our hydrostatic analysis reveals an approximately linear correlation between the total masses of BCGs ($M_{rm tot}$) and their central SMBH masses ($M_{rm BH}$). State-of-the-art cosmological simulations show that the SMBH mass could be determined by the binding energy of the halo through radiative feedback during the rapid black hole growth by accretion, while for the most massive galaxies mergers are the chief channel of growth. In the scenario of a simultaneous growth of central SMBHs and their host galaxies through mergers, the observed linear correlation could be a natural consequence of the central limit theorem.



قيم البحث

اقرأ أيضاً

72 - Fazeel M. Khan 2016
Supermassive black holes (SMBHs) are ubiquitous in galaxies with a sizable mass. It is expected that a pair of SMBHs originally in the nuclei of two merging galaxies would form a binary and eventually coalesce via a burst of gravitational waves. So f ar theoretical models and simulations have been unable to predict directly the SMBH merger timescale from ab-initio galaxy formation theory, focusing only on limited phases of the orbital decay of SMBHs under idealized conditions of the galaxy hosts. The predicted SMBH merger timescales are long, of order Gyrs, which could be problematic for future gravitational wave searches. Here we present the first multi-scale $Lambda$CDM cosmological simulation that follows the orbital decay of a pair of SMBHs in a merger of two typical massive galaxies at $zsim3$, all the way to the final coalescence driven by gravitational wave emission. The two SMBHs, with masses $sim10^{8}$ M$_{odot}$, settle quickly in the nucleus of the merger remnant. The remnant is triaxial and extremely dense due to the dissipative nature of the merger and the intrinsic compactness of galaxies at high redshift. Such properties naturally allow a very efficient hardening of the SMBH binary. The SMBH merger occurs in only $sim10$ Myr after the galactic cores have merged, which is two orders of magnitude smaller than the Hubble time.
140 - Timothy Heckman 2014
We summarize what large surveys of the contemporary universe have taught us about the physics and phenomenology of the processes that link the formation and evolution of galaxies and their central supermassive black holes. We present a picture in whi ch the population of AGN can be divided into two distinct populations. The Radiative-Mode AGN are associated with black holes that produce radiant energy powered by accretion at rates in excess of ~1% of the Eddington Limit. They are primarily associated with less massive black holes growing in high-density pseudo-bulges at a rate sufficient to produce the total mass budget in these black holes in ~10 Gyr. The circum-nuclear environment contains high density cold gas and associated star-formation. Major mergers are not the primary mechanism for transporting this gas inward; secular processes appear dominant. Stellar feedback will be generic in these objects and strong AGN feedback is seen only in the most powerful AGN. In Jet-Mode AGN the bulk of energetic output takes the form of collimated outflows (jets). These AGN are associated with the more massive black holes in more massive (classical) bulges and elliptical galaxies. Neither the accretion onto these black holes nor star-formation in their host bulge is significant today. These AGN are probably fueled by the accretion of slowly cooling hot gas that is limited by the feedback/heating provided by AGN radio sources. Surveys of the high-redshift universe are painting a similar picture. (Abridged).
The next generation of electromagnetic and gravitational wave observatories will open unprecedented windows to the birth of the first supermassive black holes. This has the potential to reveal their origin and growth in the first billion years, as we ll as the signatures of their formation history in the local Universe. With this in mind, we outline three key focus areas which will shape research in the next decade and beyond: (1) What were the seeds of the first quasars; how did some reach a billion solar masses before z$sim7$? (2) How does black hole growth change over cosmic time, and how did the early growth of black holes shape their host galaxies? What can we learn from intermediate mass black holes (IMBHs) and dwarf galaxies today? (3) Can we unravel the physics of black hole accretion, understanding both inflows and outflows (jets and winds) in the context of the theory of general relativity? Is it valid to use these insights to scale between stellar and supermassive BHs, i.e., is black hole accretion really scale invariant? In the following, we identify opportunities for the Canadian astronomical community to play a leading role in addressing these issues, in particular by leveraging our strong involvement in the Event Horizon Telescope, the {it James Webb Space Telescope} (JWST), Euclid, the Maunakea Spectroscopic Explorer (MSE), the Thirty Meter Telescope (TMT), the Square Kilometer Array (SKA), the Cosmological Advanced Survey Telescope for Optical and ultraviolet Research (CASTOR), and more. We also discuss synergies with future space-based gravitational wave (LISA) and X-ray (e.g., Athena, Lynx) observatories, as well as the necessity for collaboration with the stellar and galactic evolution communities to build a complete picture of the birth of supermassive black holes, and their growth and their influence over the history of the Universe.
113 - Gerold Busch 2016
In the last decades several correlations between the mass of the central supermassive black hole (BH) and properties of the host galaxy - such as bulge luminosity and mass, central stellar velocity dispersion, Sersic index, spiral pitch angle etc. - have been found and point at a coevolution scenario of BH and host galaxy. In this article, I review some of these relations for inactive galaxies and discuss the findings for galaxies that host an active galactic nucleus/quasar. I present the results of our group that finds that active galaxies at $zlesssim 0.1$ do not follow the BH mass - bulge luminosity relation. Furthermore, I show near-infrared integral-field spectroscopic data that suggest that young stellar populations cause the bulge overluminosity and indicate that the host galaxy growth started first. Finally, I discuss implications for the BH-host coevolution.
We carry out a comprehensive Bayesian correlation analysis between hot halos and direct masses of supermassive black holes (SMBHs), by retrieving the X-ray plasma properties (temperature, luminosity, density, pressure, masses) over galactic to cluste r scales for 85 diverse systems. We find new key scalings, with the tightest relation being the $M_bullet-T_{rm x}$, followed by $M_bullet-L_{rm x}$. The tighter scatter (down to 0.2 dex) and stronger correlation coefficient of all the X-ray halo scalings compared with the optical counterparts (as the $M_bullet-sigma_{rm e}$) suggest that plasma halos play a more central role than stars in tracing and growing SMBHs (especially those that are ultramassive). Moreover, $M_bullet$ correlates better with the gas mass than dark matter mass. We show the important role of the environment, morphology, and relic galaxies/coronae, as well as the main departures from virialization/self-similarity via the optical/X-ray fundamental planes. We test the three major channels for SMBH growth: hot/Bondi-like models have inconsistent anti-correlation with X-ray halos and too low feeding; cosmological simulations find SMBH mergers as sub-dominant over most of the cosmic time and too rare to induce a central-limit-theorem effect; the scalings are consistent with chaotic cold accretion (CCA), the rain of matter condensing out of the turbulent X-ray halos that sustains a long-term self-regulated feedback loop. The new correlations are major observational constraints for models of SMBH feeding/feedback in galaxies, groups, and clusters (e.g., to test cosmological hydrodynamical simulations), and enable the study of SMBHs not only through X-rays, but also via the Sunyaev-Zeldovich effect (Compton parameter), lensing (total masses), and cosmology (gas fractions).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا