ترغب بنشر مسار تعليمي؟ اضغط هنا

Supervising Neural Attention Models for Video Captioning by Human Gaze Data

82   0   0.0 ( 0 )
 نشر من قبل Jongwook Choi
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The attention mechanisms in deep neural networks are inspired by humans attention that sequentially focuses on the most relevant parts of the information over time to generate prediction output. The attention parameters in those models are implicitly trained in an end-to-end manner, yet there have been few trials to explicitly incorporate human gaze tracking to supervise the attention models. In this paper, we investigate whether attention models can benefit from explicit human gaze labels, especially for the task of video captioning. We collect a new dataset called VAS, consisting of movie clips, and corresponding multiple descriptive sentences along with human gaze tracking data. We propose a video captioning model named Gaze Encoding Attention Network (GEAN) that can leverage gaze tracking information to provide the spatial and temporal attention for sentence generation. Through evaluation of language similarity metrics and human assessment via Amazon mechanical Turk, we demonstrate that spatial attentions guided by human gaze data indeed improve the performance of multiple captioning methods. Moreover, we show that the proposed approach achieves the state-of-the-art performance for both gaze prediction and video captioning not only in our VAS dataset but also in standard datasets (e.g. LSMDC and Hollywood2).



قيم البحث

اقرأ أيضاً

Automatic video captioning is challenging due to the complex interactions in dynamic real scenes. A comprehensive system would ultimately localize and track the objects, actions and interactions present in a video and generate a description that reli es on temporal localization in order to ground the visual concepts. However, most existing automatic video captioning systems map from raw video data to high level textual description, bypassing localization and recognition, thus discarding potentially valuable information for content localization and generalization. In this work we present an automatic video captioning model that combines spatio-temporal attention and image classification by means of deep neural network structures based on long short-term memory. The resulting system is demonstrated to produce state-of-the-art results in the standard YouTube captioning benchmark while also offering the advantage of localizing the visual concepts (subjects, verbs, objects), with no grounding supervision, over space and time.
Inspired by the fact that different modalities in videos carry complementary information, we propose a Multimodal Semantic Attention Network(MSAN), which is a new encoder-decoder framework incorporating multimodal semantic attributes for video captio ning. In the encoding phase, we detect and generate multimodal semantic attributes by formulating it as a multi-label classification problem. Moreover, we add auxiliary classification loss to our model that can obtain more effective visual features and high-level multimodal semantic attribute distributions for sufficient video encoding. In the decoding phase, we extend each weight matrix of the conventional LSTM to an ensemble of attribute-dependent weight matrices, and employ attention mechanism to pay attention to different attributes at each time of the captioning process. We evaluate algorithm on two popular public benchmarks: MSVD and MSR-VTT, achieving competitive results with current state-of-the-art across six evaluation metrics.
Generating video descriptions automatically is a challenging task that involves a complex interplay between spatio-temporal visual features and language models. Given that videos consist of spatial (frame-level) features and their temporal evolutions , an effective captioning model should be able to attend to these different cues selectively. To this end, we propose a Spatio-Temporal and Temporo-Spatial (STaTS) attention model which, conditioned on the language state, hierarchically combines spatial and temporal attention to videos in two different orders: (i) a spatio-temporal (ST) sub-model, which first attends to regions that have temporal evolution, then temporally pools the features from these regions; and (ii) a temporo-spatial (TS) sub-model, which first decides a single frame to attend to, then applies spatial attention within that frame. We propose a novel LSTM-based temporal ranking function, which we call ranked attention, for the ST model to capture action dynamics. Our entire framework is trained end-to-end. We provide experiments on two benchmark datasets: MSVD and MSR-VTT. Our results demonstrate the synergy between the ST and TS modules, outperforming recent state-of-the-art methods.
To bridge the gap between humans and machines in image understanding and describing, we need further insight into how people describe a perceived scene. In this paper, we study the agreement between bottom-up saliency-based visual attention and objec t referrals in scene description constructs. We investigate the properties of human-written descriptions and machine-generated ones. We then propose a saliency-boosted image captioning model in order to investigate benefits from low-level cues in language models. We learn that (1) humans mention more salient objects earlier than less salient ones in their descriptions, (2) the better a captioning model performs, the better attention agreement it has with human descriptions, (3) the proposed saliency-boosted model, compared to its baseline form, does not improve significantly on the MS COCO database, indicating explicit bottom-up boosting does not help when the task is well learnt and tuned on a data, (4) a better generalization is, however, observed for the saliency-boosted model on unseen data.
The eye fixation patterns of human observers are a fundamental indicator of the aspects of an image to which humans attend. Thus, manipulating fixation patterns to guide human attention is an exciting challenge in digital image processing. Here, we p resent a new model for manipulating images to change the distribution of human fixations in a controlled fashion. We use the state-of-the-art model for fixation prediction to train a convolutional neural network to transform images so that they satisfy a given fixation distribution. For network training, we carefully design a loss function to achieve a perceptual effect while preserving naturalness of the transformed images. Finally, we evaluate the success of our model by measuring human fixations for a set of manipulated images. On our test images we can in-/decrease the probability to fixate on selected objects on average by 43/22% but show that the effectiveness of the model depends on the semantic content of the manipulated images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا