ترغب بنشر مسار تعليمي؟ اضغط هنا

Paying Attention to Descriptions Generated by Image Captioning Models

68   0   0.0 ( 0 )
 نشر من قبل Hamed R. Tavakoli
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To bridge the gap between humans and machines in image understanding and describing, we need further insight into how people describe a perceived scene. In this paper, we study the agreement between bottom-up saliency-based visual attention and object referrals in scene description constructs. We investigate the properties of human-written descriptions and machine-generated ones. We then propose a saliency-boosted image captioning model in order to investigate benefits from low-level cues in language models. We learn that (1) humans mention more salient objects earlier than less salient ones in their descriptions, (2) the better a captioning model performs, the better attention agreement it has with human descriptions, (3) the proposed saliency-boosted model, compared to its baseline form, does not improve significantly on the MS COCO database, indicating explicit bottom-up boosting does not help when the task is well learnt and tuned on a data, (4) a better generalization is, however, observed for the saliency-boosted model on unseen data.



قيم البحث

اقرأ أيضاً

Attention modules connecting encoder and decoders have been widely applied in the field of object recognition, image captioning, visual question answering and neural machine translation, and significantly improves the performance. In this paper, we p ropose a bottom-up gated hierarchical attention (GHA) mechanism for image captioning. Our proposed model employs a CNN as the decoder which is able to learn different concepts at different layers, and apparently, different concepts correspond to different areas of an image. Therefore, we develop the GHA in which low-level concepts are merged into high-level concepts and simultaneously low-level attended features pass to the top to make predictions. Our GHA significantly improves the performance of the model that only applies one level attention, for example, the CIDEr score increases from 0.923 to 0.999, which is comparable to the state-of-the-art models that employ attributes boosting and reinforcement learning (RL). We also conduct extensive experiments to analyze the CNN decoder and our proposed GHA, and we find that deeper decoders cannot obtain better performance, and when the convolutional decoder becomes deeper the model is likely to collapse during training.
140 - Lun Huang , Wenmin Wang , Jie Chen 2019
Attention mechanisms are widely used in current encoder/decoder frameworks of image captioning, where a weighted average on encoded vectors is generated at each time step to guide the caption decoding process. However, the decoder has little idea of whether or how well the attended vector and the given attention query are related, which could make the decoder give misled results. In this paper, we propose an Attention on Attention (AoA) module, which extends the conventional attention mechanisms to determine the relevance between attention results and queries. AoA first generates an information vector and an attention gate using the attention result and the current context, then adds another attention by applying element-wise multiplication to them and finally obtains the attended information, the expected useful knowledge. We apply AoA to both the encoder and the decoder of our image captioning model, which we name as AoA Network (AoANet). Experiments show that AoANet outperforms all previously published methods and achieves a new state-of-the-art performance of 129.8 CIDEr-D score on MS COCO Karpathy offline test split and 129.6 CIDEr-D (C40) score on the official online testing server. Code is available at https://github.com/husthuaan/AoANet.
Real-time image captioning, along with adequate precision, is the main challenge of this research field. The present work, Multiple Transformers for Self-Attention Mechanism (MTSM), utilizes multiple transformers to address these problems. The propos ed algorithm, MTSM, acquires region proposals using a transformer detector (DETR). Consequently, MTSM achieves the self-attention mechanism by transferring these region proposals and their visual and geometrical features through another transformer and learns the objects local and global interconnections. The qualitative and quantitative results of the proposed algorithm, MTSM, are shown on the MSCOCO dataset.
Automatic transcription of scene understanding in images and videos is a step towards artificial general intelligence. Image captioning is a nomenclature for describing meaningful information in an image using computer vision techniques. Automated im age captioning techniques utilize encoder and decoder architecture, where the encoder extracts features from an image and the decoder generates a transcript. In this work, we investigate two unexplored ideas for image captioning using transformers: First, we demonstrate the enforcement of using objects relevance in the surrounding environment. Second, learning an explicit association between labels and language constructs. We propose label-attention Transformer with geometrically coherent objects (LATGeO). The proposed technique acquires a proposal of geometrically coherent objects using a deep neural network (DNN) and generates captions by investigating their relationships using a label-attention module. Object coherence is defined using the localized ratio of the geometrical properties of the proposals. The label-attention module associates the extracted objects classes to the available dictionary using self-attention layers. The experimentation results show that objects relevance in surroundings and binding of their visual feature with their geometrically localized ratios combined with its associated labels help in defining meaningful captions. The proposed framework is tested on the MSCOCO dataset, and a thorough evaluation resulting in overall better quantitative scores pronounces its superiority.
Attention mechanisms have attracted considerable interest in image captioning because of its powerful performance. Existing attention-based models use feedback information from the caption generator as guidance to determine which of the image feature s should be attended to. A common defect of these attention generation methods is that they lack a higher-level guiding information from the image itself, which sets a limit on selecting the most informative image features. Therefore, in this paper, we propose a novel attention mechanism, called topic-guided attention, which integrates image topics in the attention model as a guiding information to help select the most important image features. Moreover, we extract image features and image topics with separate networks, which can be fine-tuned jointly in an end-to-end manner during training. The experimental results on the benchmark Microsoft COCO dataset show that our method yields state-of-art performance on various quantitative metrics.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا