ﻻ يوجد ملخص باللغة العربية
Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is evaluated only if the first argument does not suffice to determine the value of the expression. Free short-circuit logic is the equational logic in which compound statements are evaluated from left to right, while atomic evaluations are not memorised throughout the evaluation, i.e., evaluations of distinct occurrences of an atom in a compound statement may yield different truth values. We provide a simple semantics for free SCL and an independent axiomatisation. Finally, we discuss evaluation strategies, some other SCLs, and side effects.
This paper is concerned with the first-order paraconsistent logic LPQ$^{supset,mathsf{F}}$. A sequent-style natural deduction proof system for this logic is presented and, for this proof system, both a model-theoretic justification and a logical just
Short-circuit evaluation denotes the semantics of propositional connectives in which the second argument is evaluated only if the first argument does not suffice to determine the value of the expression. Short-circuit evaluation is widely used in pro
Action logic is the algebraic logic (inequational theory) of residuated Kleene lattices. This logic involves Kleene star, axiomatized by an induction scheme. For a stronger system which uses an $omega$-rule instead (infinitary action logic) Buszkowsk
In this paper we provide two new semantics for proofs in the constructive modal logics CK and CD. The first semantics is given by extending the syntax of combinatorial proofs for propositional intuitionistic logic, in which proofs are factorised in a
We study the links between the topological complexity of an omega context free language and its degree of ambiguity. In particular, using known facts from classical descriptive set theory, we prove that non Borel omega context free languages which ar