ﻻ يوجد ملخص باللغة العربية
Representing a word by its co-occurrences with other words in context is an effective way to capture the meaning of the word. However, the theory behind remains a challenge. In this work, taking the example of a word classification task, we give a theoretical analysis of the approaches that represent a word X by a function f(P(C|X)), where C is a context feature, P(C|X) is the conditional probability estimated from a text corpus, and the function f maps the co-occurrence measure to a prediction score. We investigate the impact of context feature C and the function f. We also explain the reasons why using the co-occurrences with multiple context features may be better than just using a single one. In addition, some of the results shed light on the theory of feature learning and machine learning in general.
Deep learning has dramatically improved the performance of speech recognition systems through learning hierarchies of features optimized for the task at hand. However, true end-to-end learning, where features are learned directly from waveforms, has
We propose to learn word embeddings from visual co-occurrences. Two words co-occur visually if both words apply to the same image or image region. Specifically, we extract four types of visual co-occurrences between object and attribute words from la
Machine learning models have traditionally been developed under the assumption that the training and test distributions match exactly. However, recent success in few-shot learning and related problems are encouraging signs that these models can be ad
Here we propose a general theoretical method for analyzing the risk bound in the presence of adversaries. Specifically, we try to fit the adversarial learning problem into the minimax framework. We first show that the original adversarial learning pr
In this paper, we propose to use pre-trained features from end-to-end ASR models to solve speech sentiment analysis as a down-stream task. We show that end-to-end ASR features, which integrate both acoustic and text information from speech, achieve p