ﻻ يوجد ملخص باللغة العربية
In this paper, we propose to use pre-trained features from end-to-end ASR models to solve speech sentiment analysis as a down-stream task. We show that end-to-end ASR features, which integrate both acoustic and text information from speech, achieve promising results. We use RNN with self-attention as the sentiment classifier, which also provides an easy visualization through attention weights to help interpret model predictions. We use well benchmarked IEMOCAP dataset and a new large-scale speech sentiment dataset SWBD-sentiment for evaluation. Our approach improves the-state-of-the-art accuracy on IEMOCAP from 66.6% to 71.7%, and achieves an accuracy of 70.10% on SWBD-sentiment with more than 49,500 utterances.
End-to-end (E2E) systems have achieved competitive results compared to conventional hybrid hidden Markov model (HMM)-deep neural network based automatic speech recognition (ASR) systems. Such E2E systems are attractive due to the lack of dependence o
Training Automatic Speech Recognition (ASR) models under federated learning (FL) settings has attracted a lot of attention recently. However, the FL scenarios often presented in the literature are artificial and fail to capture the complexity of real
Building ASR models across many languages is a challenging multi-task learning problem due to large variations and heavily unbalanced data. Existing work has shown positive transfer from high resource to low resource languages. However, degradations
End-to-end (E2E) spoken language understanding (SLU) can infer semantics directly from speech signal without cascading an automatic speech recognizer (ASR) with a natural language understanding (NLU) module. However, paired utterance recordings and c
Attention-based encoder-decoder (AED) models have achieved promising performance in speech recognition. However, because the decoder predicts text tokens (such as characters or words) in an autoregressive manner, it is difficult for an AED model to p