ترغب بنشر مسار تعليمي؟ اضغط هنا

KiDS-i-800: Comparing weak gravitational lensing measurements in same-sky surveys

198   0   0.0 ( 0 )
 نشر من قبل Alexandra Amon
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a weak gravitational lensing analysis of 815 square degree of $i$-band imaging from the Kilo-Degree Survey (KiDS-$i$-800). In contrast to the deep $r$-band observations, which take priority during excellent seeing conditions and form the primary KiDS dataset (KiDS-$r$-450), the complementary yet shallower KiDS-$i$-800 spans a wide range of observing conditions. The overlapping KiDS-$i$-800 and KiDS-$r$-450 imaging therefore provides a unique opportunity to assess the robustness of weak lensing measurements. In our analysis, we introduce two new `null tests. The `nulled two-point shear correlation function uses a matched catalogue to show that the calibrated KiDS-$i$-800 and KiDS-$r$-450 shear measurements agree at the level of $1 pm 4$%. We use five galaxy lens samples to determine a `nulled galaxy-galaxy lensing signal from the full KiDS-$i$-800 and KiDS-$r$-450 surveys and find that the measurements agree to $7 pm 5$% when the KiDS-$i$-800 source redshift distribution is calibrated using either spectroscopic redshifts, or the 30-band photometric redshifts from the COSMOS survey.



قيم البحث

اقرأ أيضاً

We present weak lensing shear catalogues from the fourth data release of the Kilo-Degree Survey, KiDS-1000, spanning 1006 square degrees of deep and high-resolution imaging. Our `gold-sample of galaxies, with well-calibrated photometric redshift dist ributions, consists of 21 million galaxies with an effective number density of $6.17$ galaxies per square arcminute. We quantify the accuracy of the spatial, temporal, and flux-dependent point-spread function (PSF) model, verifying that the model meets our requirements to induce less than a $0.1sigma$ change in the inferred cosmic shear constraints on the clustering cosmological parameter $S_8 = sigma_8sqrt{Omega_{rm m}/0.3}$. Through a series of two-point null-tests, we validate the shear estimates, finding no evidence for significant non-lensing B-mode distortions in the data. The PSF residuals are detected in the highest-redshift bins, originating from object selection and/or weight bias. The amplitude is, however, shown to be sufficiently low and within our stringent requirements. With a shear-ratio null-test, we verify the expected redshift scaling of the galaxy-galaxy lensing signal around luminous red galaxies. We conclude that the joint KiDS-1000 shear and photometric redshift calibration is sufficiently robust for combined-probe gravitational lensing and spectroscopic clustering analyses.
We use dense redshift surveys of nine galaxy clusters at $zsim0.2$ to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literatur e, we construct spectroscopic samples within the region of weak-lensing maps of high (70--89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross correlate the galaxy number density maps with the weak-lensing maps. The cross correlation signal when we include foreground and background galaxies at 0.5$z_{rm cl}<z<2z_{rm cl}$ is $10-23$% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross correlation signal excesses ($>$20% for A383, A689 and A750). The fractional excess in the cross correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.
We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ~450deg$^2$ of imaging data from the Kilo Degree Survey (KiDS). For a flat $Lambda$CDM cosmology with a prior on $H_0$ that encompasses the most r ecent direct measurements, we find $S_8equivsigma_8sqrt{Omega_{rm m}/0.3}=0.745pm0.039$. This result is in good agreement with other low redshift probes of large scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A $2.3$-$sigma$ tension in $S_8$ and `substantial discordance in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved `self-calibrating version of $lens$fit validated using an extensive suite of image simulations. Four-band $ugri$ photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov Chains are available at http://kids.strw.leidenuniv.nl.
We present a joint cosmological analysis of weak gravitational lensing observations from the Kilo-Degree Survey (KiDS-1000), with redshift-space galaxy clustering observations from the Baryon Oscillation Spectroscopic Survey (BOSS), and galaxy-galaxy lensing observations from the overlap between KiDS-1000, BOSS and the spectroscopic 2-degree Field Lensing Survey (2dFLenS). This combination of large-scale structure probes breaks the degeneracies between cosmological parameters for individual observables, resulting in a constraint on the structure growth parameter $S_8=sigma_8 sqrt{Omega_{rm m}/0.3} = 0.766^{+0.020}_{-0.014}$, that has the same overall precision as that reported by the full-sky cosmic microwave background observations from Planck. The recovered $S_8$ amplitude is low, however, by $8.3 pm 2.6$ % relative to Planck. This result builds from a series of KiDS-1000 analyses where we validate our methodology with variable depth mock galaxy surveys, our lensing calibration with image simulations and null-tests, and our optical-to-near-infrared redshift calibration with multi-band mock catalogues and a spectroscopic-photometric clustering analysis. The systematic uncertainties identified by these analyses are folded through as nuisance parameters in our cosmological analysis. Inspecting the offset between the marginalised posterior distributions, we find that the $S_8$-difference with Planck is driven by a tension in the matter fluctuation amplitude parameter, $sigma_8$. We quantify the level of agreement between the CMB and our large-scale structure constraints using a series of different metrics, finding differences with a significance ranging between $sim! 3,sigma$, when considering the offset in $S_{8}$, and $sim! 2,sigma$, when considering the full multi-dimensional parameter space.
We present the mass calibration for galaxy clusters detected with the AMICO code in KiDS DR3 data. The cluster sample comprises $sim$ 7000 objects and covers the redshift range 0.1 < $z$ < 0.6. We perform a weak lensing stacked analysis by binning th e clusters according to redshift and two different mass proxies provided by AMICO, namely the amplitude $A$ (measure of galaxy abundance through an optimal filter) and the richness $lambda^*$ (sum of membership probabilities in a consistent radial and magnitude range across redshift). For each bin, we model the data as a truncated NFW profile plus a 2-halo term, taking into account uncertainties related to concentration and miscentring. From the retrieved estimates of the mean halo masses, we construct the $A$-$M_{200}$ and the $lambda^*$-$M_{200}$ relations. The relations extend over more than one order of magnitude in mass, down to $M_{200} sim 2 (5) times 10^{13} M_odot/h$ at $z$ = 0.2 (0.5), with small evolution in redshift. The logarithmic slope is $sim 2.0$ for the $A$-mass relation, and $sim 1.7$ for the $lambda^*$-mass relation, consistent with previous estimations on mock catalogues and coherent with the different nature of the two observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا