ﻻ يوجد ملخص باللغة العربية
We use dense redshift surveys of nine galaxy clusters at $zsim0.2$ to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70--89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross correlate the galaxy number density maps with the weak-lensing maps. The cross correlation signal when we include foreground and background galaxies at 0.5$z_{rm cl}<z<2z_{rm cl}$ is $10-23$% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross correlation signal excesses ($>$20% for A383, A689 and A750). The fractional excess in the cross correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.
Weak lensing surveys are emerging as an important tool for the construction of mass selected clusters of galaxies. We evaluate both the efficiency and completeness of a weak lensing selection by combining a dense, complete redshift survey, the Smiths
We use a dense redshift survey in the foreground of the Subaru GTO2deg^2 weak lensing field (centered at $alpha_{2000}$ = 16$^h04^m44^s$;$delta_{2000}$ =43^circ11^{prime}24^{primeprime}$) to assess the completeness and comment on the purity of massiv
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of top
In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denois
Weak gravitational lensing is a powerful probe of cosmology and has emerged as a key probe for the Dark Universe. Up till now this science has been conducted mainly at optical wavelengths. Current upgraded and future radio facilities will provide gre