ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Structure and Band Gap Engineering of Two-Dimensional Octagon-Nitrogene

215   0   0.0 ( 0 )
 نشر من قبل Wanxing Lin
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have predicted a new phase of nitrogen with octagon structure in our previous study, which we referred to as octa-nitrogene (ON). In this work, we make further investigation on its electronic structure. The phonon band structure has no imaginary phonon modes, which indicates that ON is dynamically stable. Using ab initio molecular dynamic simulations, the structure is found to stable up to 100K, and ripples that are similar to that of graphene is formed on the ON sheet. Based on DFT calculation on its band structure, single layer ON is a 2D large-gap semiconductor with a band gap of 4.7eV. Because of inter-layer interaction, stackings can decrease the band gap. Biaxial tensile strain and perpendicular electric field can greatly influence the band structure of ON, in which the gap decreases and eventually closes as the biaxial tensile strain or the perpendicular electric field increases. In other words, both biaxial tensile strain and perpendicular electric field can drive the insulator-to-metal transition, and thus can be used to engineer the band gap of ON. From our results, ON has potential applications in the electronics, semiconductors, optics and spintronics, and so on.



قيم البحث

اقرأ أيضاً

Artificially constructed van der Waals heterostructures (vdWHs) provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics. Two methods for building vdWHs have been developed: stacking two-dimensional (2D) material s into a bilayer structure with different lattice constants, or with different orientations. The interlayer coupling stemming from commensurate or incommensurate superlattice pattern plays an important role in vdWHs for modulating the band structures and generating new electronic states. In this article, we review a series of novel quantum states discovered in two model vdWH systems -- graphene/hexagonal boron nitride (hBN) hetero-bilayer and twisted bilayer graphene (tBLG), and discuss how the electronic structures are modified by such stacking and twisting. We also provide perspectives for future studies on hetero-bilayer materials, from which an expansion of 2D material phase library is expected.
98 - Zhishuo Huang , Wenxu Zhang , 2016
Besides its predicted promising high electron mobilities at room temperature, PtSe2 bandgap sensitively depends on the number of monolayers combined by van der Waals interaction according to our calculations. We understand this by using bandstructure calculations based on the density functional theory. It was found that the front orbitals of VBM and CBM are contributed mainly from pz and px+y orbitals of Se which are sensitive to the out-plane and in-plane lattice constants, respectively. The van der Waals force enhances the bonding out-of-plane, which in-turn influences the bonding in-plane. We found that the thickness dependent bandgap has the same origin as the strain dependent bandgap, which is from the change of the front orbital interactions. The work shows the flexibilities of tuning the electronic and optical properties of this compound in a wide range.
We report a detailed ab initio study of two superlattice heterostructures, one component of which is a unit cell of CuPt ordered InSb_(0.5)As_(0.5). This alloy part of the heterostructures is a topological semimetal. The other component of each syste m is a semiconductor, zincblende-InSb, and wurtzite-InAs. Both heterostructures are semiconductors. Our theoretical analysis predicts that the variation in the thickness of the InSb layer in InSb/InSb_(0.5)As_(0.5) heterostructure renders altered band gaps with different characteristics (i.e. direct or indirect). The study holds promise for fabricating heterostructures, in which the modulation of the thickness of the layers changes the number of carrier pockets in these systems.
From first principles calculations, we investigate the stability and physical properties of single layer h-BN sheet chemically functionalized by various groups viz. H, F, OH, CH3, CHO, CN, NH2 etc. We find that full functionalization of h-BN sheet wi th these groups lead to decrease in its electronic band gap, albeit to different magnitudes varying from 0.3 eV to 3.1 eV, depending upon the dopant group. Functionalization by CHO group, in particular, leads to a sharp decrease in the electronic band gap of the pristine BN sheet to ~ 0.3 eV, which is congenial for its usage in transistor based devices. The phonon calculations on these sheets show that frequencies corresponding to all their vibrational modes are real (positive), thereby suggesting their inherent stability. The chemisorption energies of these groups to the B and N atoms of the sheet are found to lie in the range of 1.5 -6 eV.
Low-dimensional materials differ from their bulk counterpart in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding ener gies. In bulk materials the binding energy is used as an indicator in optical spectra to distinguish different kinds of excitons, but this is not possible in low-dimensional materials, where the binding energy is large and comparable in size for excitons of very different localization. Here we demonstrate that the exciton band structure, which can be accessed experimentally, instead provides a powerful way to identify the exciton character. By comparing the ab initio solution of the many-body Bethe-Salpeter equation for graphane and single-layer hexagonal BN, we draw a general picture of the exciton dispersion in two-dimensional materials, highlighting the different role played by the exchange electron-hole interaction and by the electronic band structure. Our interpretation is substantiated by a prediction for phosphorene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا