ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic Theory of Surface Topological Order for Topological Crystalline Superconductors

129   0   0.0 ( 0 )
 نشر من قبل Meng Cheng
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Meng Cheng




اسأل ChatGPT حول البحث

We construct microscopic Hamiltonians for symmetry-preserving topologically ordered states on the surface of topological crystalline superconductors, protected by a $mathbb{Z}_2$ reflection symmetry. Starting from $ u$ Majorana cones on the surface, we show that the semion-fermion topological order emerges for $ u=2$, and more generally, $mathrm{SO}( u)_ u$ topological order for all $ ugeq 2$ and $mathrm{Sp}(n)_n$ for $ u=2n$.



قيم البحث

اقرأ أيضاً

We study the surface states and chiral hinge states of a 3D second-order topological insulator in the presence of an external magnetic gauge field. Surfaces pierced by flux host Landau levels, while surfaces parallel to the applied field are not sign ificantly affected. The chiral hinge modes mediate spectral flow between neighbouring surfaces. As the magnetic field strength is increased, the surface Landau quantization deviates from that of a massive Dirac cone. Quantitatively, the $n = 0$ Landau level falls inside the surface Dirac gap, and not at the gap edge. The $n e 0$ levels exhibit a further, qualitative discrepancy: while the massive Dirac cone is expected to produce pairs of levels ($pm n$) which are symmetric around zero energy, the $n$ and $-n$ levels become asymmetric in our lattice model -- one of the pair may even be absent from the spectrum, or hybridized with the continuum. In order to resolve the issue, we extend the standard 2D massive Dirac surface theory, by including additional Hamiltonian terms at $mathcal{O} (k^2)$. While these terms do not break particle-hole symmetry in the absence of magnetic field, they lead to the aforementioned Landau level asymmetry once the magnetic field is applied. We argue that similar $mathcal{O}(k^2)$ correction terms are generically expected in lattice models containing gapped Dirac fermions, using the BHZ model of a 2D topological insulator as an example.
We present a general approach to obtain effective field theories for topological crystalline insulators whose low-energy theories are described by massive Dirac fermions. We show that these phases are characterized by the responses to spatially depen dent mass parameters with interfaces. These mass interfaces implement the dimensional reduction procedure such that the state of interest is smoothly deformed into a topological crystal, which serves as a representative state of a phase in the general classification. Effective field theories are obtained by integrating out the massive Dirac fermions, and various quantized topological terms are uncovered. Our approach can be generalized to other crystalline symmetry protected topological phases and provides a general strategy to derive effective field theories for such crystalline topological phases.
In addition to novel surface states, topological insulators can also exhibit robust gapless states at crystalline defects. Step edges constitute a class of common defects on the surface of crystals. In this work we establish the topological nature of one-dimensional (1D) bound states localized at step edges of the [001] surface of a topological crystalline insulator (TCI) Pb$_{0.7}$Sn$_{0.3}$Se, both theoretically and experimentally. We show that the topological stability of the step edge states arises from an emergent particle-hole symmetry of the surface low-energy physics, and demonstrate the experimental signatures of the particle-hole symmetry breaking. We also reveal the effects of an external magnetic field on the 1D bound states. Our work suggests the possibility of similar topological step edge modes in other topological materials with a rocks-salt structure.
The construction and classification of crystalline symmetry protected topological (SPT) phases in interacting bosonic and fermionic systems have been intensively studied in the past few years. Crystalline SPT phases are not only of conceptual importa nce, but also provide great opportunities towards experimental realization since space group symmetries naturally exist for any realistic material. In this paper, we systematically classify the crystalline topological superconductors (TSC) and topological insulators (TI) in 2D interacting fermionic systems by using an explicit real-space construction. In particular, we discover an intriguing fermionic crystalline topological superconductor that can only be realized in interacting fermionic systems (i.e., not in free-fermion or bosonic SPT systems). Moreover, we also verify the recently conjectured crystalline equivalence principle for generic 2D interacting fermionic systems.
95 - Sahinur Reja 2017
We study topological crystalline insulators doped with magnetic impurities, in which ferromagnetism at the surface lowers the electronic energy by spontaneous breaking of a crystalline symmetry. The number of energetically equivalent ground states is sensitive to the crystalline symmetry of the surface, as well as the precise density of electrons at the surface. We show that for a SnTe model in the topological state, magnetic states can have twofold symmetry, sixfold symmetry, or eightfold degenerate minima. We compute spin stiffnesses within the model to demonstrate the stability of ferromagnetic states, and consider their ramifications for thermal disordering. Possible experimental consequences of the surface magnetism are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا