ﻻ يوجد ملخص باللغة العربية
We study topological crystalline insulators doped with magnetic impurities, in which ferromagnetism at the surface lowers the electronic energy by spontaneous breaking of a crystalline symmetry. The number of energetically equivalent ground states is sensitive to the crystalline symmetry of the surface, as well as the precise density of electrons at the surface. We show that for a SnTe model in the topological state, magnetic states can have twofold symmetry, sixfold symmetry, or eightfold degenerate minima. We compute spin stiffnesses within the model to demonstrate the stability of ferromagnetic states, and consider their ramifications for thermal disordering. Possible experimental consequences of the surface magnetism are discussed.
We present a general approach to obtain effective field theories for topological crystalline insulators whose low-energy theories are described by massive Dirac fermions. We show that these phases are characterized by the responses to spatially depen
We study the properties of a family of anti-pervoskite materials, which are topological crystalline insulators with an insulating bulk but a conducting surface. Using ab-initio DFT calculations, we investigate the bulk and surface topology and show t
We show that a tetragonal lattice of weakly interacting cavities with uniaxial electromagnetic response is the photonic counterpart of topological crystalline insulators, a new topological phase of atomic band insulators. Namely, the frequency band s
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a fini
Two-dimensional higher-order topological insulators can display a number of exotic phenomena such as half-integer charges localized at corners or disclination defects. In this paper, we analyze these phenomena, focusing on the paradigmatic example of