ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface Magnetism in Topological Crystalline Insulators

96   0   0.0 ( 0 )
 نشر من قبل Sahinur Reja
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sahinur Reja




اسأل ChatGPT حول البحث

We study topological crystalline insulators doped with magnetic impurities, in which ferromagnetism at the surface lowers the electronic energy by spontaneous breaking of a crystalline symmetry. The number of energetically equivalent ground states is sensitive to the crystalline symmetry of the surface, as well as the precise density of electrons at the surface. We show that for a SnTe model in the topological state, magnetic states can have twofold symmetry, sixfold symmetry, or eightfold degenerate minima. We compute spin stiffnesses within the model to demonstrate the stability of ferromagnetic states, and consider their ramifications for thermal disordering. Possible experimental consequences of the surface magnetism are discussed.



قيم البحث

اقرأ أيضاً

We present a general approach to obtain effective field theories for topological crystalline insulators whose low-energy theories are described by massive Dirac fermions. We show that these phases are characterized by the responses to spatially depen dent mass parameters with interfaces. These mass interfaces implement the dimensional reduction procedure such that the state of interest is smoothly deformed into a topological crystal, which serves as a representative state of a phase in the general classification. Effective field theories are obtained by integrating out the massive Dirac fermions, and various quantized topological terms are uncovered. Our approach can be generalized to other crystalline symmetry protected topological phases and provides a general strategy to derive effective field theories for such crystalline topological phases.
We study the properties of a family of anti-pervoskite materials, which are topological crystalline insulators with an insulating bulk but a conducting surface. Using ab-initio DFT calculations, we investigate the bulk and surface topology and show t hat these materials exhibit type-I as well as type-II Dirac surface states protected by reflection symmetry. While type-I Dirac states give rise to closed circular Fermi surfaces, type-II Dirac surface states are characterized by open electron and hole pockets that touch each other. We find that the type-II Dirac states exhibit characteristic van-Hove singularities in their dispersion, which can serve as an experimental fingerprint. In addition, we study the response of the surface states to magnetic fields.
We show that a tetragonal lattice of weakly interacting cavities with uniaxial electromagnetic response is the photonic counterpart of topological crystalline insulators, a new topological phase of atomic band insulators. Namely, the frequency band s tructure stemming from the interaction of resonant modes of the individual cavities exhibits an omnidirectional band gap within which gapless surface states emerge for finite slabs of the lattice. Due to the equivalence of a topological crystalline insulator with its photonic-crystal analog, the frequency band structure of the latter can be characterized by a $Z_{2}$ topological invariant. Such a topological photonic crystal can be realized in the microwave regime as a three-dimensional lattice of dielectric particles embedded within a continuous network of thin metallic wires.
The surface states of 3D topological insulators can exhibit Fermi surfaces of arbitrary area when the chemical potential is tuned away from the Dirac points. We focus on topological Kondo insulators and show that the surface states can acquire a fini te Fermi surface even when the chemical potential is pinned to the Dirac point energy. We illustrate how this can occur when the crystal symmetry is lowered from cubic to tetragonal in a minimal two-orbital model. We label such surface modes as `shadow surface states. We also show that for certain bulk hybridization the Fermi surface of the shadow states can become comparable to the extremal area of the unhybridized bulk bands. The `large Fermi surface of the shadow states is expected to lead to large-frequency quantum oscillations in the presence of an applied magnetic field. Consequently, shadow surface states provide an alternative to mechanisms involving bulk Landau-quantized levels or surface Kondo breakdown for anomalous magnetic quantum oscillations in topological Kondo insulators with tetragonal crystal symmetry.
Two-dimensional higher-order topological insulators can display a number of exotic phenomena such as half-integer charges localized at corners or disclination defects. In this paper, we analyze these phenomena, focusing on the paradigmatic example of the quadrupole insulator with $C_4$ rotation symmetry, and present a topological field theory description of the mixed geometry-charge responses. Our theory provides a unified description of the corner and disclination charges in terms of a physical geometry (which encodes disclinations), and an effective geometry (which encodes corners). We extend this analysis to interacting systems, and predict the response of fractional quadrupole insulators, which exhibit charge $e/2(2k+1)$ bound to corners and disclinations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا