ﻻ يوجد ملخص باللغة العربية
Recent observations suggest that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics (MHD) simulations with the effect of self-gravity. Adaptive-mesh-refinement and sink particle techniques are used to follow long-time evolution of the shocked cloud. We find that the shock compression of turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe high accretion rate dot{M}_acc > 10^{-4} M_sun/yr that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M>50 M_sun in a few times 10^5 yr after the onset of the filament collapse.
W51A is one of the most active star-forming region in our Galaxy, which contains giant molecular clouds with a total mass of 10^6 Msun. The molecular clouds have multiple velocity components over ~20 km/s, and interactions between these components ha
Recent observations with the Spitzer Space Telescope show clear evidence that star formation takes place in the surrounding of young massive O-type stars, which are shaping their environment due to their powerful radiation and stellar winds. In this
Understanding of massive cluster formation is one of the important issues of astronomy. By analyzing the HI data, we have identified that the two HI velocity components (L- and D-components) are colliding toward the HI Ridge, in the southeastern end
We study effect of magnetic field on massive dense core formation in colliding unequal molecular clouds by performing magnetohydrodynamic simulations with sub-parsec resolution (0.015 pc) that can resolve the molecular cores. Initial clouds with the
Rich in HII regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star forming complex W33 is located at l=~12.8deg and at a distance of 2.4 kpc, has a size of ~10 pc and a total m