ﻻ يوجد ملخص باللغة العربية
We study resonances generated by rank one perturbations of selfadjoint operators with eigenvalues embedded in the continuous spectrum. Instability of these eigenvalues is analyzed and almost exponential decay for the associated resonant states is exhibited. We show how these results can be applied to Sturm-Liouville operators. Main tools are the Aronszajn-Donoghue theory for rank one perturbations, a reduction process of the resolvent based on Feshbach-Livsic formula, the Fermi golden rule and a careful analysis of the Fourier transform of quasi-Lorentzian functions. We relate these results to sojourn time estimates and spectral concentration phenomena
For a nonnegative self-adjoint operator $A_0$ acting on a Hilbert space $mathfrak{H}$ singular perturbations of the form $A_0+V, V=sum_{1}^{n}{b}_{ij}<psi_j,cdot>psi_i$ are studied under some additional requirements of symmetry imposed on the initia
Let $A$ be a self-adjoint operator on a Hilbert space $fH$. Assume that the spectrum of $A$ consists of two disjoint components $sigma_0$ and $sigma_1$. Let $V$ be a bounded operator on $fH$, off-diagonal and $J$-self-adjoint with respect to the orth
We show that for any bounded operator $T$ acting on an infinite dimensional Banach space there exists an operator $F$ of rank at most one such that $T+F$ has an invariant subspace of infinite dimension and codimension. We also show that whenever the
We show that for any bounded operator $T$ acting on infinite dimensional, complex Banach space, and for any $varepsilon>0$, there exists an operator $F$ of rank at most one and norm smaller than $varepsilon$ such that $T+F$ has an invariant subspace
In this article we consider asymptotics for the spectral function of Schrodinger operators on the real line. Let $P:L^2(mathbb{R})to L^2(mathbb{R})$ have the form $$ P:=-tfrac{d^2}{dx^2}+W, $$ where $W$ is a self-adjoint first order differential oper