ﻻ يوجد ملخص باللغة العربية
For a nonnegative self-adjoint operator $A_0$ acting on a Hilbert space $mathfrak{H}$ singular perturbations of the form $A_0+V, V=sum_{1}^{n}{b}_{ij}<psi_j,cdot>psi_i$ are studied under some additional requirements of symmetry imposed on the initial operator $A_0$ and the singular elements $psi_j$. A concept of symmetry is defined by means of a one-parameter family of unitary operators $sU$ that is motivated by results due to R. S. Phillips. The abstract framework to study singular perturbations with symmetries developed in the paper allows one to incorporate physically meaningful connections between singular potentials $V$ and the corresponding self-adjoint realizations of $A_0+V$. The results are applied for the investigation of singular perturbations of the Schr{o}dinger operator in $L_2(dR^3)$ and for the study of a (fractional) textsf{p}-adic Schr{o}dinger type operator with point interactions.
This article is dedicated to the following class of problems. Start with an $Ntimes N$ Hermitian matrix randomly picked from a matrix ensemble - the reference matrix. Applying a rank-$t$ perturbation to it, with $t$ taking the values $1le t le N$, we
Bounds on the exponential decay of generalized eigenfunctions of bounded and unbounded selfadjoint Jacobi matrices are established. Two cases are considered separately: (i) the case in which the spectral parameter lies in a general gap of the spectru
Let $A$ be a self-adjoint operator on a Hilbert space $fH$. Assume that the spectrum of $A$ consists of two disjoint components $sigma_0$ and $sigma_1$. Let $V$ be a bounded operator on $fH$, off-diagonal and $J$-self-adjoint with respect to the orth
We study perturbations of the self-adjoint periodic Sturm--Liouville operator [ A_0 = frac{1}{r_0}left(-frac{mathrm d}{mathrm dx} p_0 frac{mathrm d}{mathrm dx} + q_0right) ] and conclude under $L^1$-assumptions on the differences of the coefficient
We consider metric perturbations of the Landau Hamiltonian. We investigate the asymptotic behaviour of the discrete spectrum of the perturbed operator near the Landau levels, for perturbations with power-like decay, exponential decay or compact support.