ترغب بنشر مسار تعليمي؟ اضغط هنا

General Price Bounds for Guaranteed Annuity Options

102   0   0.0 ( 0 )
 نشر من قبل Sotirios Sabanis
 تاريخ النشر 2017
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we are concerned with the valuation of Guaranteed Annuity Options (GAOs) under the most generalised modelling framework where both interest and mortality rates are stochastic and correlated. Pricing these type of options in the correlated environment is a challenging task and no closed form solution exists in the literature. We employ the use of doubly stochastic stopping times to incorporate the randomness about the time of death and employ a suitable change of measure to facilitate the valuation of survival benefit, there by adapting the payoff of the GAO in terms of the payoff of a basket call option. We derive general price bounds for GAOs by utilizing a conditioning approach for the lower bound and arithmetic-geometric mean inequality for the upper bound. The theory is then applied to affine models to present some very interesting formulae for the bounds under the affine set up. Numerical examples are furnished and benchmarked against Monte Carlo simulations to estimate the price of a GAO for a variety of affine processes governing the evolution of mortality and the interest rate.



قيم البحث

اقرأ أيضاً

Exponential functionals of Brownian motion have been extensively studied in financial and insurance mathematics due to their broad applications, for example, in the pricing of Asian options. The Black-Scholes model is appealing because of mathematica l tractability, yet empirical evidence shows that geometric Brownian motion does not adequately capture features of market equity returns. One popular alternative for modeling equity returns consists in replacing the geometric Brownian motion by an exponential of a Levy process. In this paper we use this latter model to study variable annuity guaranteed benefits and to compute explicitly the distribution of certain exponential functionals.
166 - Michael Schmutz 2010
It turns out that in the bivariate Black-Scholes economy Margrabe type options exhibit symmetry properties leading to semi-static hedges of rather general barrier options. Some of the results are extended to variants obtained by means of Brownian sub ordination. In order to increase the liquidity of the hedging instruments for certain currency options, the duality principle can be applied to set up hedges in a foreign market by using only European vanilla options sometimes along with a risk-less bond. Since the semi-static hedges in the Black-Scholes economy are exact, closed form valuation formulas for certain barrier options can be easily derived.
We develop an expansion approach for the pricing of European quanto options written on LIBOR rates (of a foreign currency). We derive the dynamics of the system of foreign LIBOR rates under the domestic forward measure and then consider the price of the quanto option. In order to take the skew/smile effect observed in fixed income and FX markets into account, we consider local volatility models for both the LIBOR and the FX rate. Because of the structure of the local volatility function, a closed form solution for quanto option prices does not exist. Using expansions around a proxy related to log-normal dynamics, we derive approximation formulas of Black--Scholes type for the price, that have the benefit of giving very rapid numerical procedures. Our expansion formulas have the major advantage that they allow for an accurate estimation of the error, using Malliavin calculus, which is directly related to the maturity of the option, the payoff, and the level and curvature of the local volatility function. These expansions also illustrate the impact of the quanto drift adjustment, while the numerical experiments show an excellent accuracy.
The time average of geometric Brownian motion plays a crucial role in the pricing of Asian options in mathematical finance. In this paper we consider the asymptotics of the discrete-time average of a geometric Brownian motion sampled on uniformly spa ced times in the limit of a very large number of averaging time steps. We derive almost sure limit, fluctuations, large deviations, and also the asymptotics of the moment generating function of the average. Based on these results, we derive the asymptotics for the price of Asian options with discrete-time averaging in the Black-Scholes model, with both fixed and floating strike.
A financial market model where agents trade using realistic combinations of buy-and-hold strategies is considered. Minimal assumptions are made on the discounted asset-price process - in particular, the semimartingale property is not assumed. Via a n atural market viability assumption, namely, absence of arbitrages of the first kind, we establish that discounted asset-prices have to be semimartingales. In a slightly more specialized case, we extend the previous result in a weakened version of the Fundamental Theorem of Asset Pricing that involves strictly positive supermartingale deflators rather than Equivalent Martingale Measures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا