ﻻ يوجد ملخص باللغة العربية
The time average of geometric Brownian motion plays a crucial role in the pricing of Asian options in mathematical finance. In this paper we consider the asymptotics of the discrete-time average of a geometric Brownian motion sampled on uniformly spaced times in the limit of a very large number of averaging time steps. We derive almost sure limit, fluctuations, large deviations, and also the asymptotics of the moment generating function of the average. Based on these results, we derive the asymptotics for the price of Asian options with discrete-time averaging in the Black-Scholes model, with both fixed and floating strike.
This study deals with the problem of pricing compound options when the underlying asset follows a mixed fractional Brownian motion with jumps. An analytic formula for compound options is derived under the risk neutral measure. Then, these results are
This paper focuses on the pricing of continuous geometric Asian options (GAOs) under a multifactor stochastic volatility model. The model considers fast and slow mean reverting factors of volatility, where slow volatility factor is approximated by a
Taking advantage of the recent litterature on exact simulation algorithms (Beskos, Papaspiliopoulos and Roberts) and unbiased estimation of the expectation of certain fonctional integrals (Wagner, Beskos et al. and Fearnhead et al.), we apply an exac
A new framework for pricing the European currency option is developed in the case where the spot exchange rate fellows a time-changed fractional Brownian motion. An analytic formula for pricing European foreign currency option is proposed by a mean s
In this paper we propose an extension of the Merton model. We apply the subdiffusive mechanism to analyze equity warrant in a fractional Brownian motion environment, when the short rate follows the subdiffusive fractional Black-Scholes model. We obta