ﻻ يوجد ملخص باللغة العربية
We consider an optimal stretching problem for strictly convex domains in $mathbb{R}^d$ that are symmetric with respect to each coordinate hyperplane, where stretching refers to transformation by a diagonal matrix of determinant $1$. Specifically, we prove that the stretched convex domain which captures the most positive lattice points in the large volume limit is balanced: the $(d-1)$-dimensional measures of the intersections of the domain with each coordinate hyperplane are equal. Our results extend those of Antunes & Freitas, van den Berg, Bucur & Gittins, Ariturk & Laugesen, van den Berg & Gittins, and Gittins & Larson. The approach is motivated by the Fourier analysis techniques used to prove the classical $#{(i,j) in mathbb{Z}^2 : i^2 +j^2 le r^2 } =pi r^2 + mathcal{O}(r^{2/3})$ result for the Gauss circle problem.
We study a combinatorial problem that recently arose in the context of shape optimization: among all triangles with vertices $(0,0)$, $(x,0)$, and $(0,y)$ and fixed area, which one encloses the most lattice points from $mathbb{Z}_{>0}^2$? Moreover, d
Iso-edge domains are a variant of the iso-Delaunay decomposition introduced by Voronoi. They were introduced by Baranovskii & Ryshkov in order to solve the covering problem in dimension $5$. In this work we revisit this decomposition and prove the
Given a convex polyhedral surface P, we define a tailoring as excising from P a simple polygonal domain that contains one vertex v, and whose boundary can be sutured closed to a new convex polyhedron via Alexandrovs Gluing Theorem. In particular, a d
The discrete Laplace operator on a triangulated polyhedral surface is related to geometric properties of the surface. This paper studies extremum problems for eigenvalues of the discrete Laplace operators. Among all triangles, an equilateral triangle
The notion of a valuation on convex bodies is very classical. The notion of a valuation on a class of functions was recently introduced and studied by M. Ludwig and others. We study an explicit relation between continuous valuations on convex functio