ﻻ يوجد ملخص باللغة العربية
Given a convex polyhedral surface P, we define a tailoring as excising from P a simple polygonal domain that contains one vertex v, and whose boundary can be sutured closed to a new convex polyhedron via Alexandrovs Gluing Theorem. In particular, a digon-tailoring cuts off from P a digon containing v, a subset of P bounded by two equal-length geodesic segments that share endpoints, and can then zip closed. In the first part of this monograph, we primarily study properties of the tailoring operation on convex polyhedra. We show that P can be reshaped to any polyhedral convex surface Q a subset of conv(P) by a sequence of tailorings. This investigation uncovered previously unexplored topics, including a notion of unfolding of Q onto P--cutting up Q into pieces pasted non-overlapping onto P. In the second part of this monograph, we study vertex-merging processes on convex polyhedra (each vertex-merge being in a sense the reverse of a digon-tailoring), creating embeddings of P into enlarged surfaces. We aim to produce non-overlapping polyhedral and planar unfoldings, which led us to develop an apparently new theory of convex sets, and of minimal length enclosing polygons, on convex polyhedra. All our theorem proofs are constructive, implying polynomial-time algorithms.
Given any two convex polyhedra P and Q, we prove as one of our main results that the surface of P can be reshaped to a homothet of Q by a finite sequence of tailoring steps. Each tailoring excises a digon surrounding a single vertex and sutures the d
Let C be a simple, closed, directed curve on the surface of a convex polyhedron P. We identify several classes of curves C that live on a cone, in the sense that C and a neighborhood to one side may be isometrically embedded on the surface of a cone
A spectral convex set is a collection of symmetric matrices whose range of eigenvalues form a symmetric convex set. Spectral convex sets generalize the Schur-Horn orbitopes studied by Sanyal-Sottile-Sturmfels (2011). We study this class of convex bod
We prove that every positively-weighted tree T can be realized as the cut locus C(x) of a point x on a convex polyhedron P, with T weights matching C(x) lengths. If T has n leaves, P has (in general) n+1 vertices. We show there are in fact a continuu
We study intermediate sums, interpolating between integrals and discrete sums, which were introduced by A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), 1449--1466]. For a given semi-rational polytope