ترغب بنشر مسار تعليمي؟ اضغط هنا

Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs

115   0   0.0 ( 0 )
 نشر من قبل Foad Shokrollahi
 تاريخ النشر 2016
  مجال البحث مالية
والبحث باللغة English
 تأليف Foad Shokrollahi




اسأل ChatGPT حول البحث

A new framework for pricing the European currency option is developed in the case where the spot exchange rate fellows a time-changed fractional Brownian motion. An analytic formula for pricing European foreign currency option is proposed by a mean self-financing delta-hedging argument in a discrete time setting. The minimal price of a currency option under transaction costs is obtained as time-step $Delta t=left(frac{t^{beta-1}}{Gamma(beta)}right)^{-1}left(frac{2}{pi}right)^{frac{1}{2H}}left(frac{alpha}{sigma}right)^{frac{1}{H}}$ , which can be used as the actual price of an option. In addition, we also show that time-step and long-range dependence have a significant impact on option pricing.



قيم البحث

اقرأ أيضاً

102 - Foad Shokrollahi 2018
The purpose of this paper is to analyze the problem of option pricing when the short rate follows subdiffusive fractional Merton model. We incorporate the stochastic nature of the short rate in our option valuation model and derive explicit formula f or call and put option and discuss the corresponding fractional Black-Scholes equation. We present some properties of this pricing model for the cases of $alpha$ and $H$. Moreover, the numerical simulations illustrate that our model is flexible and easy to implement.
In this paper we propose an extension of the Merton model. We apply the subdiffusive mechanism to analyze equity warrant in a fractional Brownian motion environment, when the short rate follows the subdiffusive fractional Black-Scholes model. We obta in the pricing formula for zero-coupon bond in the introduced model and derive the partial differential equation with appropriate boundary conditions for the valuation of equity warrant. Finally, the pricing formula for equity warrant is provided under subdiffusive fractional Brownian motion model of the short rate.
108 - Foad Shokrollahi 2017
This study deals with the problem of pricing compound options when the underlying asset follows a mixed fractional Brownian motion with jumps. An analytic formula for compound options is derived under the risk neutral measure. Then, these results are applied to value extendible options. Moreover, some special cases of the formula are discussed and numerical results are provided.
An investor with constant absolute risk aversion trades a risky asset with general It^o-dynamics, in the presence of small proportional transaction costs. In this setting, we formally derive a leading-order optimal trading policy and the associated w elfare, expressed in terms of the local dynamics of the frictionless optimizer. By applying these results in the presence of a random endowment, we obtain asymptotic formulas for utility indifference prices and hedging strategies in the presence of small transaction costs.
We consider conditional-mean hedging in a fractional Black-Scholes pricing model in the presence of proportional transaction costs. We develop an explicit formula for the conditional-mean hedging portfolio in terms of the recently discovered explicit conditional law of the fractional Brownian motion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا