ترغب بنشر مسار تعليمي؟ اضغط هنا

Retinal Vessel Segmentation in Fundoscopic Images with Generative Adversarial Networks

490   0   0.0 ( 0 )
 نشر من قبل Jaemin Son
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Retinal vessel segmentation is an indispensable step for automatic detection of retinal diseases with fundoscopic images. Though many approaches have been proposed, existing methods tend to miss fine vessels or allow false positives at terminal branches. Let alone under-segmentation, over-segmentation is also problematic when quantitative studies need to measure the precise width of vessels. In this paper, we present a method that generates the precise map of retinal vessels using generative adversarial training. Our methods achieve dice coefficient of 0.829 on DRIVE dataset and 0.834 on STARE dataset which is the state-of-the-art performance on both datasets.



قيم البحث

اقرأ أيضاً

Anonymization and data sharing are crucial for privacy protection and acquisition of large datasets for medical image analysis. This is a big challenge, especially for neuroimaging. Here, the brains unique structure allows for re-identification and t hus requires non-conventional anonymization. Generative adversarial networks (GANs) have the potential to provide anonymous images while preserving predictive properties. Analyzing brain vessel segmentation, we trained 3 GANs on time-of-flight (TOF) magnetic resonance angiography (MRA) patches for image-label generation: 1) Deep convolutional GAN, 2) Wasserstein-GAN with gradient penalty (WGAN-GP) and 3) WGAN-GP with spectral normalization (WGAN-GP-SN). The generated image-labels from each GAN were used to train a U-net for segmentation and tested on real data. Moreover, we applied our synthetic patches using transfer learning on a second dataset. For an increasing number of up to 15 patients we evaluated the model performance on real data with and without pre-training. The performance for all models was assessed by the Dice Similarity Coefficient (DSC) and the 95th percentile of the Hausdorff Distance (95HD). Comparing the 3 GANs, the U-net trained on synthetic data generated by the WGAN-GP-SN showed the highest performance to predict vessels (DSC/95HD 0.82/28.97) benchmarked by the U-net trained on real data (0.89/26.61). The transfer learning approach showed superior performance for the same GAN compared to no pre-training, especially for one patient only (0.91/25.68 vs. 0.85/27.36). In this work, synthetic image-label pairs retained generalizable information and showed good performance for vessel segmentation. Besides, we showed that synthetic patches can be used in a transfer learning approach with independent data. This paves the way to overcome the challenges of scarce data and anonymization in medical imaging.
From diagnosing neovascular diseases to detecting white matter lesions, accurate tiny vessel segmentation in fundus images is critical. Promising results for accurate vessel segmentation have been known. However, their effectiveness in segmenting tin y vessels is still limited. In this paper, we study retinal vessel segmentation by incorporating tiny vessel segmentation into our framework for the overall accurate vessel segmentation. To achieve this, we propose a new deep convolutional neural network (CNN) which divides vessel segmentation into two separate objectives. Specifically, we consider the overall accurate vessel segmentation and tiny vessel segmentation as two individual objectives. Then, by exploiting the objective-dependent (homoscedastic) uncertainty, we enable the network to learn both objectives simultaneously. Further, to improve the individual objectives, we propose: (a) a vessel weight map based auxiliary loss for enhancing tiny vessel connectivity (i.e., improving tiny vessel segmentation), and (b) an enhanced encoder-decoder architecture for improved localization (i.e., for accurate vessel segmentation). Using 3 public retinal vessel segmentation datasets (CHASE_DB1, DRIVE, and STARE), we verify the superiority of our proposed framework in segmenting tiny vessels (8.3% average improvement in sensitivity) while achieving better area under the receiver operating characteristic curve (AUC) compared to state-of-the-art methods.
157 - Muyi Sun , Guanhong Zhang 2021
Accurate retinal vessel segmentation is a challenging problem in color fundus image analysis. An automatic retinal vessel segmentation system can effectively facilitate clinical diagnosis and ophthalmological research. Technically, this problem suffe rs from various degrees of vessel thickness, perception of details, and contextual feature fusion. For addressing these challenges, a deep learning based method has been proposed and several customized modules have been integrated into the well-known encoder-decoder architecture U-net, which is mainly employed in medical image segmentation. Structurally, cascaded dilated convolutional modules have been integrated into the intermediate layers, for obtaining larger receptive field and generating denser encoded feature maps. Also, the advantages of the pyramid module with spatial continuity have been taken, for multi-thickness perception, detail refinement, and contextual feature fusion. Additionally, the effectiveness of different normalization approaches has been discussed in network training for different datasets with specific properties. Experimentally, sufficient comparative experiments have been enforced on three retinal vessel segmentation datasets, DRIVE, CHASEDB1, and the unhealthy dataset STARE. As a result, the proposed method outperforms the work of predecessors and achieves state-of-the-art performance in Sensitivity/Recall, F1-score and MCC.
Automatic segmentation of retinal vessels in fundus images plays an important role in the diagnosis of some diseases such as diabetes and hypertension. In this paper, we propose Deformable U-Net (DUNet), which exploits the retinal vessels local featu res with a U-shape architecture, in an end to end manner for retinal vessel segmentation. Inspired by the recently introduced deformable convolutional networks, we integrate the deformable convolution into the proposed network. The DUNet, with upsampling operators to increase the output resolution, is designed to extract context information and enable precise localization by combining low-level feature maps with high-level ones. Furthermore, DUNet captures the retinal vessels at various shapes and scales by adaptively adjusting the receptive fields according to vessels scales and shapes. Three public datasets DRIVE, STARE and CHASE_DB1 are used to train and test our model. Detailed comparisons between the proposed network and the deformable neural network, U-Net are provided in our study. Results show that more detailed vessels are extracted by DUNet and it exhibits state-of-the-art performance for retinal vessel segmentation with a global accuracy of 0.9697/0.9722/0.9724 and AUC of 0.9856/0.9868/0.9863 on DRIVE, STARE and CHASE_DB1 respectively. Moreover, to show the generalization ability of the DUNet, we used another two retinal vessel data sets, one is named WIDE and the other is a synthetic data set with diverse styles, named SYNTHE, to qualitatively and quantitatively analyzed and compared with other methods. Results indicates that DUNet outperforms other state-of-the-arts.
The mood of a text and the intention of the writer can be reflected in the typeface. However, in designing a typeface, it is difficult to keep the style of various characters consistent, especially for languages with lots of morphological variations such as Chinese. In this paper, we propose a Typeface Completion Network (TCN) which takes one character as an input, and automatically completes the entire set of characters in the same style as the input characters. Unlike existing models proposed for image-to-image translation, TCN embeds a character image into two separate vectors representing typeface and content. Combined with a reconstruction loss from the latent space, and with other various losses, TCN overcomes the inherent difficulty in designing a typeface. Also, compared to previous image-to-image translation models, TCN generates high quality character images of the same typeface with a much smaller number of model parameters. We validate our proposed model on the Chinese and English character datasets, which is paired data, and the CelebA dataset, which is unpaired data. In these datasets, TCN outperforms recently proposed state-of-the-art models for image-to-image translation. The source code of our model is available at https://github.com/yongqyu/TCN.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا