ﻻ يوجد ملخص باللغة العربية
This paper introduces a new real-time object detection approach named Yes-Net. It realizes the prediction of bounding boxes and class via single neural network like YOLOv2 and SSD, but owns more efficient and outstanding features. It combines local information with global information by adding the RNN architecture as a packed unit in CNN model to form the basic feature extractor. Independent anchor boxes coming from full-dimension k-means is also applied in Yes-Net, it brings better average IOU than grid anchor box. In addition, instead of NMS, Yes-Net uses RNN as a filter to get the final boxes, which is more efficient. For 416 x 416 input, Yes-Net achieves 79.2% mAP on VOC2007 test at 39 FPS on an Nvidia Titan X Pascal.
Keypoint detector and descriptor are two main components of point cloud registration. Previous learning-based keypoint detectors rely on saliency estimation for each point or farthest point sample (FPS) for candidate points selection, which are ineff
In recent years, intellectual property (IP), which represents literary, inventions, artistic works, etc, gradually attract more and more peoples attention. Particularly, with the rise of e-commerce, the IP not only represents the product design and b
Object detection is one of the most important areas in computer vision, which plays a key role in various practical scenarios. Due to limitation of hardware, it is often necessary to sacrifice accuracy to ensure the infer speed of the detector in pra
In this paper, we propose a two-stage deep learning framework called VoxelContext-Net for both static and dynamic point cloud compression. Taking advantages of both octree based methods and voxel based schemes, our approach employs the voxel context
We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iterati