ترغب بنشر مسار تعليمي؟ اضغط هنا

The Link between Magnetic-field Orientations and Star Formation Rates

49   0   0.0 ( 0 )
 نشر من قبل Hua-bai Li
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding star formation rates (SFR) is a central goal of modern star-formation models, which mainly involve gravity, turbulence and, in some cases, magnetic fields (B-fields). However, a connection between B-fields and SFR has never been observed. Here, a comparison between the surveys of SFR and a study of cloud-field alignment - which revealed a bimodal (parallel or perpendicular) alignment - shows consistently lower SFR per solar mass for clouds almost perpendicular to the B-fields. This is evidence of B-fields being a primary regulator of SFR. The perpendicular alignment possesses a significantly higher magnetic flux than the parallel alignment and thus a stronger support of the gas against self-gravity. This results in overall lower masses of the fragmented components, which are in agreement with the lower SFR.



قيم البحث

اقرأ أيضاً

Star formation is primarily controlled by the interplay between gravity, turbulence, and magnetic fields. However, the turbulence and magnetic fields in molecular clouds near the Galactic Center may differ substantially from spiral-arm clouds. Here w e determine the physical parameters of the central molecular zone (CMZ) cloud G0.253+0.016, its turbulence, magnetic field and filamentary structure. Using column-density maps based on dust-continuum emission observations with ALMA+Herschel, we identify filaments and show that at least one dense core is located along them. We measure the filament width W_fil=0.17$pm$0.08pc and the sonic scale {lambda}_sonic=0.15$pm$0.11pc of the turbulence, and find W_fil~{lambda}_sonic. A strong velocity gradient is seen in the HNCO intensity-weighted velocity maps obtained with ALMA+Mopra, which is likely caused by large-scale shearing of G0.253+0.016, producing a wide double-peaked velocity PDF. After subtracting the gradient to isolate the turbulent motions, we find a nearly Gaussian velocity PDF typical for turbulence. We measure the total and turbulent velocity dispersion, 8.8$pm$0.2km/s and 3.9$pm$0.1km/s, respectively. Using magnetohydrodynamical simulations, we find that G0.253+0.016s turbulent magnetic field B_turb=130$pm$50$mu$G is only ~1/10 of the ordered field component. Combining these measurements, we reconstruct the dominant turbulence driving mode in G0.253+0.016 and find a driving parameter b=0.22$pm$0.12, indicating solenoidal (divergence-free) driving. We compare this to spiral-arm clouds, which typically have a significant compressive (curl-free) driving component (b>0.4). Motivated by previous reports of strong shearing motions in the CMZ, we speculate that shear causes the solenoidal driving in G0.253+0.016 and show that this reduces the star formation rate (SFR) by a factor of 6.9 compared to typical nearby clouds.
(Abridged) The abundance ratios between key elements such as iron and alpha-process elements carry a wealth of information on the star formation history (SFH) of galaxies. So far, simple chemical evolution models have linked [alpha/Fe] with the SFH t imescale, correlating large abundance ratios with short-lived SFH. We provide an empirical correlation between [alpha/Fe] (measured from spectral indices) and the SFH (determined via a non-parametric spectral-fitting method). We offer an empirical version of the iconic outline of Thomas et al. (2005), relating star formation timescale with galaxy mass, although our results suggest, in contrast, a significant population of old (>10Gyr) stars even for the lowest mass ellipticals. In addition, the abundance ratio is found to be strongly correlated with the time to build up the stellar component, showing that the highest [alpha/Fe] (>+0.2) are attained by galaxies with the shortest half-mass formation time (<2Gyr), or equivalently, with the smallest (<40%) fraction of populations younger than 10Gyr. These observational results support the standard hypothesis that star formation incorporates the Fe-enriched interstellar medium into stars, lowering the high abundance ratio of the old populations.
The goal of the Ariel space mission is to observe a large and diversified population of transiting planets around a range of host star types to collect information on their atmospheric composition. The planetary bulk and atmospheric compositions bear the marks of the way the planets formed: Ariels observations will therefore provide an unprecedented wealth of data to advance our understanding of planet formation in our Galaxy. A number of environmental and evolutionary factors, however, can affect the final atmospheric composition. Here we provide a concise overview of which factors and effects of the star and planet formation processes can shape the atmospheric compositions that will be observed by Ariel, and highlight how Ariels characteristics make this mission optimally suited to address this very complex problem.
Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, an d modeling and analysis are required to identify hints as actual signs of star-formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star-formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star-formation are analyzed, specifically, the short gas consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the alpha-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.
Bars are common in low-redshift disk galaxies, and hence quantifying their influence on their host is of importance to the field of galaxy evolution. We determine the stellar populations and star formation histories of 245 barred galaxies from the Ma NGA galaxy survey, and compare them to a mass- and morphology-matched comparison sample of unbarred galaxies. At fixed stellar mass and morphology, barred galaxies are optically redder than their unbarred counterparts. From stellar population analysis using the full spectral fitting code Starlight, we attribute this difference to both older and more metal-rich stellar populations. Dust attenuation however, is lower in the barred sample. The star formation histories of barred galaxies peak earlier than their non-barred counterparts, and the galaxies build up their mass at earlier times. We can detect no significant differences in the local environment of barred and un-barred galaxies in this sample, but find that the HI gas mass fraction is significantly lower in high-mass ($rm{M}_{star} > 10^{10}~rm{M}_{odot}$) barred galaxies than their non-barred counterparts. We speculate on the mechanisms that have allowed barred galaxies to be older, more metal-rich and more gas-poor today, including the efficient redistribution of galactic fountain byproducts, and a runaway bar formation scenario in gas-poor disks. While it is not possible to fully determine the effect of the bar on galaxy quenching, we conclude that the presence of a bar and the early cessation of star formation within a galaxy are intimately linked.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا